
Crawling the Community Structure of Multiplex Networks
(Supplemental Materials)

Ricky Laishram
Syracuse University
Syracuse NY, USA
rlaishra@syr.edu

Jeremy D. Wendt
Sandia National Laboratories

Albuquerque, NM, USA
jdwendt@sandia.gov

Sucheta Soundarajan
Syracuse University
Syracuse NY, USA
susounda@syr.edu

1 Running Time of MCS
For a given sampling problem, the layer costs, number of
layers, and graph properties are fixed. The user specifies
the total budget allocated for the sampling. In this section,
we discuss how the running time of MCS scales with the
properties of M (the underlying multiplex network) and the
budget given B.

For simplicity, let us assume that RNDSample and
MABSample are performed η times; and the budget B is
split up evenly each time. Then the budget allocated for each
iteration is

B′ =
B

η
. (1)

Let c0, c1, . . . , cl be the cost of a neighbor query in each
of the layers, and let

ζ =
∑
y=[0,l]

Λy,0
cy

(2)

and, ζ =
∑
y∈[0,l]

Λy,0
c2y

(3)

where Λy,0 is the edge overlap of Ly w.r.t. L0.
During the budget allocation, the budget for a layer Lx is

proportional to the edge overlap, Λx,0, and inverse of layer
cost, 1

cx
.

Bx =

Λx,0

cx∑
y=[0,l]

Λy,0

cy

B′ =
Λx,0B

cxηζ
(4)

Suppose there is a layer Lz such that Λz,0

c2z
is the maximum.

That is

z = max
y∈[0,l]

Λy,0
c2y

(5)

and, λ =
Λz,0
c2z

. (6)

Then the number of nodes queried in Lx in one iteration
is,

nx =
Λx,0B

c2xηζ
≤ Bλ

ηζ
= nz. (7)

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Let us assume that a neighborhood query takes constant
time. During one iteration of RNDSample, a random walk is
performed on (l− 1) layers. So, the number of nodes queried
is ∑

x∈(0,l]

nx ≤
∑
x∈(0,l]

nx =
B (l − 1)λ

ηζ
. (8)

RNDSample is performed η times. So, total number of
nodes queried in all layers is

Nr ≤
B (l − 1)λ

ζ
.

So, the running time due to RNDSample is

O
(
B (l − 1)λ

ζ

)
≈ O

(
lBλ

ζ

)
. (9)

After the j-th iteration of RNDSample, the number of
nodes in LSx is1,

nSx ≈ jnx + n′x (10)

where n′x is the number of nodes in LSx that have been ob-
served but not queried.

If the number of queried nodes is much smaller than the
total number of nodes the original graph, the number of
observed but unqueried nodes is proportional to the number
of queried nodes. That is, if d is the average degree, every
queried node can bring in (d− 1) nodes. So,

n′x ≈ (d− 1) jnx =⇒ nSx ≤ djnz. (11)
During the initialization of MABSample, community de-

tection is performed on all the layers. So, time it takes to
perform community detection during that iteration is2

O

 ∑
x∈[0,l]

nSx log
(
nSx
) ≈ O (ldjnz log (djnz)) . (12)

Then, the total time taken by this step in the η iterations is,

O

 η∑
j=1

(ljdnz log (djnz))

 ≈ O (η2ldnz log (dηnz)
)
.

(13)
1The value will be lower in the case of unreliable query response.
2Assuming the community detection algorithm is the Louvain

method.

Substituting for nz , the time taken by the community de-
tection steps is

O
(
η2ldBλ

ηζ
log

(
dηBλ

ηζ

))
≈O

(
ldBλ

ζ
log

(
dBλ

ζ

))
. (14)

During the node selection through RBandit, we need
to compute various node centralities. Among all the type of
roles that we use, the one that is most expensive to compute
is the betweenness centrality. So, for simplicity let us assume
that an arm involving the betweenness centrality is always
selected. We use an approximate method of computing the
betweenness centrality as described in (Chehreghani 2014).
The run time contribution from this step is

O (ηlknz) ≈ O
(
lBλ

ζ

)
. (15)

When we compute the community update distance, the
two partitions are very close. So, the time it takes to compute
it is (Porumbel, Hao, and Kuntz 2011)

O
(
lB

ζ

)
. (16)

The time it takes to compute the edge overlap is also

O
(
lB

ζ

)
. (17)

So, the running time of MCS is

O
(
lB(λ+ 1)

ζ
+
lB

ζ
+
ldBλ

ζ
log

(
dBλ

ζ

))
≈O

(
ldBλ

ζ
log

(
dBλ

ζ

))
. (18)

2 Sensitivity Analysis of MCS
There are several of factors that affects the performance of
MCS. The main ones are: (1) the edge overlap between the
different layers (not just between cheaper layer and expensive
layer), (2) the number of layers, and (3) the relative cost of a
query in the cheaper layer compared to the expensive layer.
Of these factors, the number of layers and query costs are
known beforehand, but the edge overlap is not.

In general, if we have more information (edges) about L0

collected with the same algorithm, the community structure
of LS0 will be more similar to that of L0 (Maiya and Berger-
Wolf 2010).

Assume that there are l layers and the cost of a query in
a layer Lx is cx. Because the network is undirected, we will
observe duplicate edges when we query multiple nodes in
the same layer. The amount of duplicates will depend on: (1)
density of edges in the layer, and (2) the number of queries
already made. During the sampling process, the number of
queries already made is the only variable. So, for a layer
Lx on which there have already been i queries, let ox (i) be
the expected fraction of unobserved nodes in the next query
response.

ox (i) ≥ ox (i+ 1) . (19)

For simplicity, let us assume that the budget allocated to a
layer is the same in every iteration. Then, for budget B, the
expected number of edges found after using up the allocated
budget is,

dx

ηBx∑
i=0

ox(i). (20)

Unless Lx is the first layer that is being queried, there
is some probability that edges found in Lx have already
been observed in a query on another layer. This probability
depends on the edge overlay between the other layers and Lx.
Suppose the layers are queried in sequence. (That is layer L0

first, L1 next and so on.) The probability of finding an edge
not observed in an earlier layer is,

x−1∏
y=0

(1− Λy,x) . (21)

Then the expected number of unobserved edges on query-
ing layer Lx is

dx

(
x−1∏
y=0

(1− Λy,x)

)(
ηBx∑
i=0

ox(i)

)
. (22)

Recall that we are interested in the edges in L0, and not
all the edges found in the other layers will exist in L0. The
edge overlap Λx,0 gives us the fraction of edges found in Lx
that also exist in L0. So, the expected number of previously
unobserved edges found in Lx that also exist in L0 is

dxΛx,0

(
x−1∏
y=0

(1− Λy,x)

)(
ηBx∑
i=0

ox(i)

)
. (23)

Then if all the layers are queried, the expected number of
edges in L0 found is

E
[
|EB0 |

]
=

l∑
x=0

(
dxΛx,0

(
x−1∏
y=0

(1− Λy,x)

)(
ηBx∑
i=0

ox(i)

))
.

(24)
Now we can examine the effect of number of layers and

query cost on the performance of MCS.

2.1 Effect of Number of Layers
For simplicity let us assume that all the cheaper layers have
the same cost ratio, and η is fixed.

Let E
[
EB0
]

be the the expected number of edges in LB0
when there are l layers. Suppose we introduce a new lay-
ers such that the total layers count is now l′. Then, assume
E
[
E
B

0

]
be the expected number of edges when there are l′

layers. Then, ∑
y∈[0,l]

Λx,0
cx
≤

∑
y∈[0,l′]

Λx,0
cx

(25)

ζ ≤ ζ ′ (26)

Bx ≥ B′x (27)

where B′x is the budget allocated to layer Lx in the case
where we have l′ layers.

Then,

E
[
|ES0 |

]
− E

[
|ES0 |

]
=

l∑
x=0

(
dxΛx,0

(
x−1∏
y=0

(1− Λy,x)

)(
ηBx∑
i=0

ox(i)

))

−
l′∑
x=0

dxΛx,0

(
x−1∏
y=0

(1− Λy,x)

)ηB′
x∑

i=0

ox(i)


=

l∑
x=0

dxΛx,0

(
x−1∏
y=0

(1− Λy,x)

) ηBx∑
i=ηB′

x+1

ox(i)


−

l′∑
x=l+1

dxΛx,0

(
x−1∏
y=0

(1− Λy,x)

)ηB′
x∑

i=0

ox(i)

 .

(28)

Case 1: l is large For large values of x, it can be shown
that

x−1∏
y=0

(1− Λy,x) ≈ 0. (29)

Then, if l is large enough

l′∑
x=l+1

dxΛx,0

(
x−1∏
y=0

(1− Λy,x)

)ηB′
x∑

i=0

ox(i)

 ≈ 0.

(30)

It can be shown that
l∑

x=0

dxΛx,0

(
x−1∏
y=0

(1− Λy,x)

) ηBx∑
i=ηB′

x+1

ox(i)

 ≥ 0.

(31)

So,

E
[
|ES0 |

]
− E

[
|ES0 |

]
≥ 0 (32)

=⇒ E
[
|ES0 |

]
≥ E

[
|ES0 |

]
(33)

.

Case 2: l is small Since ox(i) ≥ ox(i+1), it can be shown
that for large enough value of i

ox (i) ≈ 0. (34)

And for small l, ζ is small, and consequently Bx is large.
If this value is large enough,

ηBx∑
i=1+ηB′

x

ox(i) ≈ 0 (35)

and,
ηB′

x∑
i=0

ox(i) ≥ 0 (36)

Then,
l∑

x=0

dxΛx,0

(
x−1∏
y=0

(1− Λy,x)

) Bx∑
i=ηB′

x+1

ox(i)

 ≈ 0

(37)

l′∑
x=l+1

dxΛx,0

(
x−1∏
y=0

(1− Λy,x)

)ηB′
x∑

i=0

ox(i)

 ≥ 0.

(38)
Then,

E
[
|ES0 |

]
− E

[
|ES0 |

]
≤ 0 (39)

=⇒ E
[
|ES0 |

]
≤ E

[
|ES0 |

]
. (40)

So, as the number of layer increases the expected perfor-
mance of MCS increases initially, but after a certain value it
decreases with increasing number of layers.

2.2 Effect of Relative Layer Cost
For simplicity assume that all the cheaper layers have the
same query cost. Assume relative layer costs r, r′ such that
r > r′. Then, the layer cost of Lx>0 are

cx = rc0 (41)

and, c′x = r′c0. (42)
And let,

ζ =
∑
x∈[0,l]

Λx,0
cx

(43)

and, ζ ′ =
∑
x∈[0,l]

Λx,0
c′x

. (44)

Then,

rζ = r
∑
x∈[0,l]

Λx,0
cx

=
r

c0
+
∑
x∈(0,l]

Λx,0
c0

(45)

and, r′ζ ′ = r′
∑
x∈[0,l]

Λx,0
c′x

=
r′

c0
+
∑
x∈(0,l]

Λx,0
c0

. (46)

So,
rζ > r′ζ =⇒ Bx < B′x. (47)

Suppose E
[
|ES0 |

]
and E

[
|ES0 |

]
are the expected number

of edges in LS0 in the case of layer cost r an r′ respectively.
Then,

E
[
|ES0 |

]
− E

[
|ES0 |

]
=

l∑
x=0

dxΛx,0

(
x−1∏
y=0

(1− Λy,x)

)− ηB′
x∑

i=ηBx+1

ox(i)

 .

(48)
Since, ox (i) ≥ 0,

E
[
|ES0 |

]
≤ E

[
|ES0 |

]
. (49)

That is, the performance of MCS increases if the relative
cost of the cheaper layers drops.

0.2

0.4

0.6

0.8

0 10000 20000 30000

Layer Count

S
im

il
ar
it
y

MCS

w.o. CBandit

w.o. RBandit

Figure 1: Performance comparison between MCS (red), MCS
wihout CBandit (green), and MCS without RBandit
(blue).

3 Effect of Role and Community Bandits
One can ask the question of how much the different bandits
contribute to the performance of MCS. To answer this, we
compare MCS, which has all the bandits, against ones without
CBandit and RBandit. In the absence of CBandit all
the unqueried nodes in the layer are in the candidate set, and
in the absence of RBandit a random node is selected from
the candidate set.

We cannot remove LBandit, because we need to know
which layer to query on. So, in these experiments, we com-
pare MCS, which has all the bandits, against ones without
CBandit and RBandit. In the absence of CBandit all
the unqueried nodes in the layer are in the candidate set, and
in the absence of RBandit a random node is selected from
the candidate set.

Figure 1 shows the comparison between MCS with all three
bandits (shown in red), without CBandit (green) and with-
out RBandit (blue) on the DBLP dataset. It can be observed
that the methods with only two bandits perform well initially.
This might be due to the fact that with fewer bandits, there
are fewer combinations of arms to learn. However, MCS with
all three bandits soon catches up, and then outperforms the
others.

References
Chehreghani, M. H. 2014. An efficient algorithm for approx-
imate betweenness centrality computation. The Computer
Journal 57(9):1371–1382.
Maiya, A. S., and Berger-Wolf, T. Y. 2010. Sampling com-
munity structure. In Proceedings of the 19th international
conference on World wide web, 701–710. ACM.
Porumbel, D. C.; Hao, J. K.; and Kuntz, P. 2011. An efficient
algorithm for computing the distance between close partitions.
Discrete Applied Mathematics 159(1):53–59.

