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Abstract
Simple networks have been used to model and analyze mu-
sic. However, this assumes Markov property – there is no
higher order memory and dependencies. In this work, we
propose using higher order networks MusicHON to model
music from the symbolic representation, which incorporates
higher-order dependencies between notes. We propose var-
ious music-related features that can be extracted from this
representation. Feature distribution and Principal Compo-
nent Analysis show that these features provide insights on
music genres and artists. We further demonstrate the power
of MusicHON and its features through music genre classifica-
tion. We find that MusicHON outperforms the simple network
baseline significantly. Feature importance analysis of the
classifier additionally shows that the MusicHON features are
meaningful and align with common perception of music gen-
res. We show that MusicHON – a higher order network rep-
resentation of music – is more accurate, and provides more
insights about music than simple networks.

Keywords— higher order networks, music, classification

1 Introduction

Music is a natural complex system: notes interact
sequentially to create melody and interact vertically to
create harmony. With only 12 notes (in western music),
composers are able to create different styles and music
genres.

Because of the huge variety and quantity of music
that is available nowadays, analysis and classification of
music using data mining techniques is an area of great
research interest. It helps us in understanding how
music develops over time, characteristics of different
music genres, etc. at a larger scale.

Analysis of music through data mining generally
falls into two categories based on how the music data is
represented – symbolic and audio. In the former case,
each music piece is represented by the music notation
(e.g. sheet music); and for the latter, each piece is
represented by an audio wave. In this paper, we focus
on the symbolic representation.

Various methods have been proposed to analyze
music from the symbolic representation. There are var-
ious researches classifying music genres from the sym-

∗Northeastern University, Boston, MA, USA (Email:
wang.xind@husky.neu.edu)
†Syracuse University, Syracuse, NY, USA (Email:

rlaishra@syr.edu)

bolic representation of the pieces [15, 1, 16] where fea-
tures such as key number, duration, pitch are extracted
directly from the symbolic representation and used for
classification. Simple networks and fixed low order net-
works have also been used to model and analyze music
[23, 9, 5]. These representations assume there are no or
limited dependencies between notes.

In contrast, in this paper, we take the higher-order
dependencies between notes into account and model
music piece as a Higher Order Network (HON) [28].
We propose several features that can be extracted from
HON. From the feature distributions, we observe that
these features align with the common perception of
music genre. Using Principal Component Analysis on
the features, we can spot differences and relationships
between different genres and artists. Classification of
genre using these features outperforms the ones using
simple networks, showing its potential to capture music
characteristics. We further perform feature importance
analysis to show that these features are insightful.

The contributions of this paper are:

1. We model music pieces as higher order networks
MusicHON and propose several music-related fea-
tures that can be extracted from this representa-
tion.

2. Through feature distribution and Principal Com-
ponent Analysis, we are able to gain instights of
differences and relationships between music genres
and artists.

3. We show experimentally that classifying music gen-
res using features on MusicHON outperforms sim-
ple network baselines. Further feature importance
analysis from the classifier shows how these features
align with common music perception.

2 Related Works

2.1 Music Representation Most works on music
analysis using data mining techniques can be grouped
into two categories - using symbolic representation or
audio representation, depending on how the music is
represented [7, 27]. In symbolic representation the
music pieces are represented by sequences of symbols
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that represent note, pitch, time, timbre, etc. In audio
representation, the music pieces are represented as audio
waves – resulting from the recording of sound sources or
from direct electronic synthesis.

There are fundamental differences between sym-
bolic representation and audio representation [27]. Sym-
bolic representation is content-aware and describes
events in relation to formalized concepts of music (mu-
sic theory), whereas the audio representation is content-
unaware. On the other hand, audio representation is a
continuous flow of information, both in time and ampli-
tude, whereas the symbolic representation accounts for
discrete events. Since our work is to understand music,
we choose the content-aware symbolic representation.

2.2 Symbolic Representation With MIDI MIDI
is one of the most common formats of symbolic repre-
sentation. MIDI (short for Musical Instrument Digital
Interface) is a technical standard that describes a com-
munications protocol, digital interface, and electrical
connectors that connect a wide variety of electronic mu-
sical instruments, computers, and related audio devices
for playing, editing and recording music. [24]. MIDI car-
ries event messages, including sheet music information
such as a note’s notation, pitch, duration as well as per-
formance information such as velocity, vibrato, panning
to the right or left of stereo, and clock signals (which set
tempo). On the other hand, this format takes a lot less
space, which makes it much easier to store and commu-
nicate, and allows for better comparison between music
pieces played on different instruments. The richness of
MIDI data as well as it being computational-friendly
makes it a suitable format for large scale music analy-
sis. Various studies have been conducted using MIDI
data, including analyzing music similarity [10, 2], music
genre classification [12, 4] and even creating computer-
composed music [17].

2.3 Representing Music as Simple Networks
Simple networks have been used to model and analyze
music, where notes are represented as nodes and tran-
sition between notes (i.e. change from one note to an-
other) is denoted by edges. Ferreti [9] used the simple
network model of music and investigated various net-
work properties including degree, betweenness central-
ity, modularity, etc. It was found that these music net-
works are scale free and exhibits the small world prop-
erty. Serrà et al. [23] analyzed music pieces across time
by creating a network of pitch transitions. They used
this representation to study the change note frequency
distribution over time for western contemporary popu-
lar music. Corrêa et al. [5] further includes second order
dependencies in music representation separately from

the first order dependencies, through building a similar-
ity network, they are able to find community structures
of music genres.

2.4 Higher Order Networks Trajectories, as a
common real-world data type, have been studied us-
ing networks. A common practice for network con-
struction from trajectory data is to build a simple
network: two sequentially adjacent entities are con-
nected with an edge, and the number of times of the
two entities appearing sequentially as the edge weight
[8, 18, 14]. This assumes Markov property (first-order
dependency): there is no higher order memory and de-
pendencies in the sequence, which is not always the
case in real-world data. To tackle this problem, Higher
Order Networks (HON) have been proposed to cap-
ture higher-order dependencies in data, especially for
sequential data. There are various models for higher
order networks. The simplest is fixed-order network
[19, 11, 22, 21] where different order of Markov transi-
tions are considered. This is easy to model but has the
drawback of not considering different order as a whole
as well as having potential redundant information. As
an improvement, Scholtes et al. develops an algorithm
to determine the maximum order needed and represent
it as multiple higher-order models up to a maximum
order [22]. To tackle redundancy and incorporate mul-
tiple orders more flexibly, Xu et al. proposed a model
where one generates significant higher-order rules from
the data and build a single network using those ex-
tracted multi-order rules [28]. Additionally, traditional
network analysis tools can be applied on this network
directly.

Studies have found that higher-order networks are
able to reveal properties that the simple network fails
to capture. For example, Rosvall et al. revealed
that higher-order information can effect the results of
community detection, ranking and spreading process on
the network [19]. Xu et al. found that using their
higher-order network model, the clustering on global
shipping trajectory network are no longer limited to
geography distance, with the potential application on
identifying regions wherein aquatic species invasions
are likely to happen [28]. These results show that
higher-order networks are powerful to model the non-
Markovian relationship between entities which simple
network models lack.

3 Music as Higher Order Networks

In this section we describe how we process a MIDI file
to a note sequence (Section 3.1) and use that to create
a HON representation (Section 3.2). Then we use these
HON to extract features (Section 3.3) that are related
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to music perception.

3.1 Data and Data Processing
Data Our MIDI corpus is from “Largest MIDI

Collection on the Internet”.1 This dataset contains
genre labels for each music piece. The genres included
are Classical (1751 pieces), Folk (5115 pieces), Jazz (245
pieces), Pop (193 pieces) and Rock (877 pieces) music.

Data Processing The data processing converts
the MIDI file for each music piece into a note sequence
further fed in the HON generation algorithm. There are
four steps involved in data processing: (1) converting
MIDI files into note sequences with raw coding, (2)
converting the raw coding into relative coding, (3)
handling the rests and (4) selecting track.

The MIDI files are processed using music21[6] into
note sequences with separate tracks. Under the raw
MIDI coding scheme, the notes are numbered 0 to 127,
representing 12 notes across 10 octaves.

The raw coding scheme is not ideal because the
same music piece can be played under different keys.
We use relative pitch coding to tackle this problem. To
obtain the relative pitch coding, we detect the tone note
of the piece using music21. The relative coding is then
obtained through subtracting the tone note code from
the raw code.

Besides notes, rests are also important in music.
However, we observe that the extracted sequence have
some rests that are not in the original sheet music. To
correct this, we obtain the duration of all the notes in
a piece. The shortest note is set as the lower threshold,
and the longest as the upper threshold. Rests whose
duration are less than the lower threshold are ignored.
Of the remaining rests, those with duration less than the
upper threshold are considered “short rests” and coded
with 128. The remaining rests are considered as “long
rests” and denoted by 129 in the sequence.

In MIDI representation, different instruments are
denoted by different tracks. In our work, we select the
track with the most number of notes for each music
piece, with the assumption that this is most likely to
be the melody line. After applying the above process,
we obtain the note sequence for each music piece coded
from 0 to 129.

3.2 Representing Music as Higher Order Net-
works In this paper, we represent different music pieces
as Higher Order Networks (HON) using the method by
Xu et al. [28]. In HON, nodes are not always a single
entity (note), they can be a sequence of entities that rep-

1https://www.reddit.com/r/WeAreTheMusicMakers/

comments/3ajwe4/the_largest_midi_collection_on_the_

internet/

(a) Sheet Music Snippet

(b) Simple Network (c) MusicHON

Figure 1: Sheet music snippet of “Twinkle, Twin-
kle, Little Star” and its simple network and
MusicHON construction.

resent dependencies between the entities. The construc-
tion of the HON consists of two steps: 1) rule extraction
identifies higher-order dependencies of high confidence
and sufficient support and 2) network wiring which con-
verts the rules into a graph representation. Using this
algorithm, we convert the note sequence of a music piece
(obtained through the process in Section 3.1) to HON
and we refer this representation as MusicHON for further
discussion.

MusicHON H(V,E) is a directed weighted network.
Node i ∈ V represents a sequence of notes n, written as
nc|n1p, n2p, ...nlp, which means that the current note is nc
and the previous notes are n1p, n

2
p, ...n

k
p, where k is the

number of previous notes. Edge (i, j) ∈ E is a weighted
edge where the weight is the transition probability from
node i to j.

As an example, consider the snippet of “Twinkle,
Twinkle Little Star” shown in Fig. 1a. The rule from
the first two notes is C → C. Following this rules,
the additional rules when we consider the next note
in the sequence are C → G and C|C → G. All the
possible rules are similarly generated from the note se-
quence. The rules are filtered based on confidence and
support value calculating using the entire music piece.
Remaining rules become the edges for MusicHON, and
the transition probability for these edges are calculated
from the note sequence. Fig. 1b and 1c shows the sim-
ple network and MusicHON representation for “Twinkle,
Twinkle Little Star” snippet separately. We can observe
that MusicHON is able to preserve dependency informa-
tion of the music itself in contrast to the simple network
representation.

3.3 Feature Extraction The MusicHON representa-
tion allows us to extract features that are meaningful
from a musicology point of view, which might not be
applicable under simple networks. We propose the fol-
lowing features:
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Abruptness Abruptness captures the abrupt
changes in music, for example, transition from the verse
to the chorus in pop music. We consider these abrupt
changes as the infrequent bridges between different sec-
tions of the music piece and define abruptness as the
pitch range across the edge that has the highest between-
ness centrality relative to the transition probability.

Denoting BC(i, j) and p(i, j) as the edge between-
ness centrality and transition probability of an edge
(i, j), and (i, j)∗ as the edge such that,

(i, j)∗ = arg max
(i,j)∈E

BC(i, j)

p(i, j)

Denoting the set of pitches of the notes in the
higher-order node i by Fi, then the pitch range across an
edge (i, j) can be calculated as δ(i, j) = max(max(Fi)−
min(Fj),max(Fj) − min(Fi)). Finally, we formally
define the abruptness of the MusicHON by,

FA = δ(i, j)∗.

Branching The MusicHON of some pieces can look
more complicated than others. For example, for some
classical music, there can be a lot of potential follow-
up notes from one note as the starting point. This will
make the MusicHON have a more “complicated” struc-
ture – nodes on average have higher out-degree. In con-
trast, pop music usually has a distinguishable melody
that repeats throughout the piece, resulting in more
“chains” in its MusicHON and nodes on average have
lower out-degree. Therefore, to capture such differ-
ences, we define branching as the average out-degree af-
ter removing edges with low transition probability (with
a threshold). Let No(i) be the node i’s out-neighbors in
H, and θ be the transition probability threshold. Then
the branching of MusicHON is given by

FB(θ) =
1

|V |
∑
i∈V
|{j ∈ No(i) : p(i, j) ≥ θ}|.

Melodic Melody is a note sequence that repeats
throughout the music. Under MusicHON, melody should
be captured in the higher order nodes. Therefore, we
define melodic as the average length of the higher order
nodes in the MusicHON, written as:

FM =
1

|V |
∑
i∈V

k(i) + 1

Repeatedness (XW: needs more work) Pop
and rock music often have more repeated structures
than classical or jazz music. Here we define repeatedness
at path length l as the variance of the random walker
probabilities encountering all simple paths with length

l. The intuition is that for a given path length l, if
there are paths that are more likely to be traversed,
this indicates there are repetitive patterns; if all paths
have equal traversing probability, there is no significant
repetitive pattern. Denoting p as a simple path in
MusicHON, and P (p) is the probability of a random
walker traversing path p, we can calculate repeatedness
as:

FR|l = Var
|p|=l
{P (p)}.

Pitch Range Pitch range changes with develop-
ment of instruments over time, composition tradition
change – especially on dynamics of music, etc., there-
fore this range may capture music characteristics over
time. In this project, we use three versions of pitch
range:

Pitch range in the piece FP0 This is simply the
highest pitch minus the lowest pitch in the piece.

Average pitch range in node FP1 Denoting the
set of pitches of the notes in the higher-order node i
by Fi, we can calculate the pitch range of a node as
δi = max(Fi) − min(Fi). Then we can calculate the
average pitch range in node as

FP1 =
1

|V |
∑
i∈V

δi.

Average pitch range across edge FP2 Denoting
the set of pitches of the notes in the higher-order node
i by Fi, the pitch range across an edge (i, j) can be cal-
culated as δ(i, j) = max(max(Fi)−min(Fj),max(Fj)−
min(Fi)). Then we can calculate the average pitch range
across edge as

FP2 =
1

|E|
∑

(i,j)∈E
δi,j .

4 Analysis and Experiments

In this section, we perform analysis and experiments
to evaluate whether the features proposed in Section
3.3 can successfully capture the differences in human
perception of music genres, and their prediction power
on music genre classification. We also perform a case
study to look into the relationship between a music piece
and its MusicHON.

4.1 Feature Distribution To investigate the differ-
ences between music genres, we plot the distribution of
the features for different genres, shown in Fig. 2.

We observe that for abruptness, Pop, Rock and
Jazz music are more “abrupt” than Folk and Classical
music. This may be due to that Pop and Rock in general
have verse-and-chorus structure, creating a certain level
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of “abruptness” in the music; Jazz contains a lot
of improvisations, which might lead to more abrupt
changes.

For branching, we observe that Classical has signif-
icantly more “branches” than other genres, following by
Jazz and Folk music. Pop and Rock has lower branching
scores. This aligns with our expectation that in classical
music pieces, there are more possibility from a starting
note; where in Pop and Rock, there are clearer “chain”
structure in music because of distinctive melody lines.

For repeateness, we show the distribution of FR|l=5

for different genres as well as the median score of FR|l,
l ∈ [1, 2, 3, 4, 5] for each genre. For the distribution
of FR|l=5 we can see that Classical has lower FR|l=5

than other genres. Folk, Pop and Rock has higher
repeatedness score, which aligns with our expectation.
For different l, we observe similar trends of Classical
having the lowest repeatedness score, followed by Jazz;
Folk, Pop and Rock have higher repeatedness score.

For melodic, we observe that jazz is significantly
less “melodic” than other genres. This is very much
expected because of the improvisations in Jazz will make
it sounds less “melodic”.

For pitch ranges, we observe limited difference
between music genres in pitch range in piece. However,
for pitch range in node and pitch range in edges, we
observe that Classical and Folk are significantly lower
than other genres. This might be due to that the
traditional composition of Classical and Folk tend to
have less dramatic changes locally (i.e. there are less
dramatic pitch changes within a short distance). In
general, the observations of the feature distributions
aligns with our common perception of music genres.

4.2 Principal Component Analysis Additional to
distribution comparison, we conduct Principal Compo-
nent Analysis (PCA) [13] on the features we proposed.
Since the features have different scale, we standardized
each feature before performing PCA. We analyzed PCA
on different music genres, as well as selected artists:
Bach, Beatles, Mozart, Nirvana and Vivaldi. We ex-
tract principle components that corresponds to at least
80% of the variance. We found that three components
are enough to satisfy this criteria in all cases.

We plot in Fig. 3 the first two principal compo-
nents.2 Each point in the plot is a piece, with the color
denoting the music genre or the artist. We draw an el-
lipse covering 95% of the points for each genre or artist
to visually show the clusters.

From Fig. 3(a) we can see that, though all genres

2The plots of the first three principal components are given in
the supplementary material.

overlaps, clusters have different characteristics. For
example, the centroid for Classical cluster is further
away from other genres; Folk has a tighter cluster
while the cluster for Jazz is loose. For different artist
(Fig. 3 (b)) we can see that Bach overlaps more with
Vivaldi than to Mozart. This may reflect that Bach and
Vivaldi are both Baroque era composers and Bach was
deeply influenced by Vivaldi [25]. Mozart as a classical
era composer is overlapping his predecessors but also
being distinctive from them. The cluster of Beatles is
loose than Nirvana, maybe reflecting that music style of
Beatles is more diverse.

4.3 Music Genre Classification We perform one
vs one music genre classification as a validation of the
the power of MusicHON and proposed features. If the
MusicHON representation and the features we proposed
capture meaningful aspects of music, we should be able
to use these features to predict music genre. For branch-
ing and repeateness, we take Fm

B (0.1) and FR|l=5. We
denote this as MusicHON in the results.

We also consider graph properties of MusicHON as
additional features. The graph properties we consider
are number of nodes, number of edges, diameter, short-
est path length, density, clustering coefficient and mod-
ularity. We denote this with MusicHON+ in the results.

Baselines We compare the performance of
MusicHON and MusicHON+ against two baselines. Ferreti
[9] represented music as a simple network, and described
various features extracted from this representation that
helps to describe different type of music. Therefore,
to compare our MusicHON features, we also generated
simple network representations of the music pieces and
extracted the features described in [9]. We will refer
this as SimpleNetwork in the subsequent discussion.

Out of the features we propose in Section 3.3, only
branching and repeatedness are applicable to a simple
network. Therefore we also perform experiments where
we use these two features (calculated from the simple
network) along with the SimpleNetwork features. We
refer to this as SimpleNetwork+ in the discussion that
follows.

Experiment Setting Since the goal is to evaluate
the goodness of the features, we use multiple classifiers:
Support Vector Machine (SVM) [26], Random Forest
(RF) [3] and Multilayer Perceptron Neural Network
(MLP) [20]. For SVM, we use a radial basis function
kernel; for RF, we use 100 trees; and for MLP, we use
two hidden layers of sizes 10 and 5. To handle the issue
of class imbalance, we undersample the majoritiy class
to match the minority class.

Classification Results Fig. 4(a) shows the results
for the classification between Classical vs Folk, Classical
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Feature Classical Folk Jazz Pop Rock

FA 5 6 7 8 8
FB 1.80 1.60 1.66 1.58 1.55

FR|l=5 1.24× 10−5 2.40× 10−4 5.25× 10−5 1.69× 10−4 1.74× 10−4

FM 1.90 1.91 1.40 1.78 1.95

FP0 25 22 27 21 22
FP1 3.44 3.45 2.64 4.64 5.33

FP2 6.43 6.55 10.17 9.61 9.90

(i) Median value of features of different genres.

Figure 2: The distributions of features generated from MusicHON for pieces of different genres. The
median of each distribution is shown as vertical lines and additionally reported in the table. The observations
align with our common perception of music genres. Pop, Rock and Jazz are more “abrupt” than Folk and
Classical. Classical music has significantly more “branches” than other genres. For melodic, we observe that Jazz
is significantly less “melodic” than other genres. For repeatedness, we can see that Classical are less repetitive
than other genres; repeatedness score also decreases with the increase of path length. For pitch ranges, we observe
limited difference of music genres in pitch range in piece. However, for pitch range in node and pitch range across
edge, we observe that Classical and Folk are significantly lower than other genres.
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Figure 3: Principal components of the features for different genres and artists. We observe interesting
patterns such as: the centroid for classical music cluster is further away from other genres; Bach and Vivaldi are
overlapped a lot possibly due to they are both Baroque era composers, etc.

vs Jazz and Classical vs Pop.3 We report the Area under
Curve (AUC) of the Receiver Operating Characteristic
(ROC) curve for 5-fold cross validation for different
classifiers (denoting on the x-axis) and features used
(denoting with different colors).

As we can observe, Random Forest achieves higher
accuracy comparing to SVM and MLP. Almost in all
the cases, MusicHON and MusicHon+ features outper-
forms SimpleNetwork and SimpleNetwork+. In most
of the cases, the improvement is statistically significant.
On comparing MusicHON and MusicHON+ we can see
that MusicHON+ slightly improves the performance on
MusicHON. With new features directly related to music,
SimpleNetwork+ slightly outperforms SimpleNetwork,
but in many cases still underperform MusicHON and
MusicHON+. This further demonstrates the usefulness
of the proposed features and the power of higher-order
dependencies.

We also perform classification between selected
artists/composers. The results are provided in the sup-
plementary material due to space limitations, and sim-
ilar observations can also be made under those cases.

Feature Importance To investigate if the
MusicHON features correspond to what we understand
about music, we investigate the feature importance
assigned by the Random Forest classifier. A feature
is assigned a higher importance score if it can better
separate out the different classes.

Fig. 4(b) shows the feature importance for Classical
vs Folk, Classical vs Jazz and Classical vs Pop.4 We
can see that branching and repeatedness is important
for differentiating Classical from Folk and Pop. This is

3The results for other genre pairs are provided in the supple-
mentary material.

4Other results are provided in supplementary material.

expected since Classical has in general a more complex
structure and less repetitive than Folk and Pop. The
most import feature to distinguish Classical from Jazz
is melodic and average pitch range in edge. This is
possibly due to that Jazz has a lot of improvisations
which makes it less melodic than classical and since
it is a more modern music genre, the pitch ranges is
different from Classical. These observations indicate
that MusicHON features are related to characteristics of
different music genres.

4.4 Case Study To further understand the relation-
ship between a music piece and its MusicHON represen-
tation, we conduct a case study on the song Blackbird
by The Beatles (see Fig. 5). To make the visualization
easier to understand, we transform the relative MIDI
coding back to the 12 notes in music.

From the network, we can clearly identify the
opening and the end of the first section of the piece
(marked with ellipses in Fig. 5). Interestingly, these two
parts are connected together in the network and form
a community, which may reflect the concept of “going
home” in music. We also located the highest-order node
in this network, the node “A—B.D.C” (marked with
square ), and found that it appears in the connection of
two sections within the verse. The case study suggests
that MusicHON can provide information on the higher-
level structure of a music piece.

4.5 Running Time We also experimentally evaluate
the time it takes to generate MusicHON against the
trajectory length (length of the symbolic representation
of the musical piece), and the running time to extract
all the proposed features against number of edges in
MusicHON(shown in Fig. 6). We can observe that for
both MusicHON generation and feature extraction, the
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(a) AUC scores.

Genre 1 Genre 2 FA FB FR|l=5 FM FP0 FP1 FP2

Classical Folk 0.07 0.26 0.24 0.09 0.10 0.11 0.09

Classical Jazz 0.08 0.11 0.09 0.21 0.16 0.10 0.21
Classical Pop 0.11 0.20 0.17 0.08 0.13 0.12 0.17

(b) Feature Importance.

Figure 4: Genre classification results on Classical vs Folk, Jazz and Pop. (a) AUC scores. The
x-axis denotes different classifier used and the y-axis is the (mean ± standard deviation) of the AUC score from
5-fold cross validation. Both MusicHON+ and MusicHON perform significantly better than SimpleNetwork and
SimpleNetwork+ in most of the cases. MusicHON+ slightly outperforms MusicHON. (b) Normalized feature
importance from Random Forest classifier. Higher values indicates that the feature is more important.
The two most important features for each classification are indicated in bold. We observe that branching and
repeatedness are more important distinguishing Classical from Folk and Pop, while melodic and pitch range across
edge are more important for Classical vs Jazz.

Figure 5: Case Study of Blackbird by The Beatles
using MusicHON representation. From the network,
we can identify the opening and the end of the first
section of the piece. We also spot that the highest-
order node “A—B.D.C” appears in the connection of
two sections within the verse.

growth of running time is close to linear, showing that
our method is very scalable.

5 Conclusion and Future Work

In this paper, we propose modeling music pieces using
MusicHON which can capture higher-order dependencies
in music pieces. We propose several meaningful features
extracted from this representation.

Feature distribution and PCA analysis shows that
the features from MusicHON can reflect the differences
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(b) Running time to ex-
tract the proposed features
against the number of edges
in MusicHON.

Figure 6: Running time to generate MusicHON and
feature extraction.

between music genres and artists. Experiments show
that using MusicHON features for music genre classifi-
cation outperforms the ones based on simple networks.
Feature importance analysis shows that important fea-
tures to distinguish genres align with common music
perception. Case study shows that MusicHON can pro-
vide information on the higher-level structure of a mu-
sic piece. The above results demonstrate the power of
higher order networks in understanding music.

In this work, we consider only one track in the music
piece and do not consider the duration of the notes.
In music, the interaction between different tracks and

Copyright c© 2020 by SIAM
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duration of the notes are very important. We leave them
as future work for further improvement of our model.
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