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ABSTRACT

A k-core of a graph is defined as the maximal subgraph such that all the nodes in the subgraph
has at least k neighbors within the subgraph. k-core have been used in a number of applications
ranging from anomaly detection and finding influential spreaders in social networks, to studying

the robustness of financial and ecological networks.

In our work, we study the effect of missing data (edges or nodes) to the k-core of a graph. In partic-
ular, we study three different type of changes. The first type of change is the core structural change,
in which the rank order of nodes by k-core number is changed. The second type is the change in the
size of the k-core, and it is called the core minimization. The final change we study is called graph

unraveling, and it is associated with a change in the size of the graph itself.

We study a graph’s resilience changes - how can we efficiently tell if a graph is resilience to each of
these changes? We then use our analysis to propose novel algorithms to make small modifications
toagraph with the objective of maximizing its resilience. We show experimentally that our proposed

method outperforms all considered baselines methods on real-world graphs.

Finally, we study the organization of the different k-shells in a graph (for different values of k). For
example, in some graphs there are many connections between shells, while in other graphs, the
shells are mostly disconnected from one another. We prove that this organization can have a huge

impact on the resilience of a graph to the three changes we studied.
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Chapter1

Introduction

Agraph, G = (V, E), is as structure that consists of a set of vertices, V, and connections between
pairs of vertices, denoted by E. In the literature, the terms “network”, “nodes” and “links” are inter-
changeably used for graph, vertices and edges respectively. In the real-world we encounter various
type of data that can be modeled as a graph. For example, a social network can be represented
by a graph where the nodes are the users and edges represent friendships. Another example is a

protein network; the proteins are the nodes and two nodes are connected by an edge if they have

an interaction.

When the edges have directions, the graph is called a directed graph; otherwise it is called an undi-
rected graph. Examples of directed graphsincludes Twitter followers network, email networks, food
web etc.; and Facebook friendship network, protein interaction networks, etc. are some examples
of undirected networks. In this dissertation, when we talk about graph we are referring about undi-
rected graphs. In the case of directed graphs, similar ideas as presented can be extended after we

take into account the edge direction.

To visualize, graphs are represented by circles (or dots), representing the nodes, and lines connect-
ing them, representing the edges. In the case of directed graphs, the edges have an arrow pointing
denotingits direction. Figure 1.1 shows a visualization of the Zachary Karate Club Network [97]. Here,

the nodes are people, and two nodes are connected if they interact with each other.



Figure 1.1: Visualization the Zachary Karate Club Network [97]. The dots represents people, and the
connections representinteraction between people. Two nodes are connected ifthey interact with each
other.

There are a number of tools and techniques available for analysis of graphs. Representing real-
world structures by graphs allows us to better understand and analyze them. For example, if we
want to find an important person in a social network, we can use the concept of node centrality
(Section 2.2) on the graph. If we are interested in understanding the higher level organization of the
world wide web - such as the pattern of connections between group of websites that frequently
link to each other and to others that rarely link to each other — we can study the dense substruc-

tures (Section 2.3) of the graphs.

Frequently, we may need to analyze only a part of the entire graph - in such case we consider the
relevant subgraph. A subgraph of a graph G, is another graph G’ = (V’, E’), such that (1) V/ C V
and (2) E’ C E.In other words, a subgraph of G is the collection of V’, a subset of the nodes in G,
and E’,some or all the connections between nodesin V/in G.If E’ is the set of all the connections

between V' that exist in G, we call that subgraph the induced subgraph of V'.

Although a subgraph can be induced from any subset of nodes, certain types of subgraphs are of



special interest, because they give us insight into the organization of the network. Some common

ones includes communities [41], k-cores [88], k-truss [29], k-peak [44] etc.

In this work, we focus our attention on k-cores. A k-core is defined asthe maximal subgraph such that
all nodes in the subgraph have at least k connections to other nodes in the subgraph (Section 2.3.2).
By changing the value of k, we can get subgraphs of differentimportance/centrality. We refer to the
hierarchical organization of the k-cores for different values of k as the k-core structure. In general for
higher values of k, the resulting subgraph is considered more central/important. The largest value
of k such that a node belongs to that k-core is called the core number of that node. As an example,
k-cores have been used in many important applications, such as identifying important proteins
in protein-protein interaction networks, identifying anomalies (bots) in social networks, speed up
community detection, study ecology collapse etc. Refer to Section 2.3.2 for a more thorough review

about k-cores.

Because k-cores are used in so many applications, it is important to understand their resilience
to errors or changes in the graph. Collection of data is not always perfect - some edges or nodes
might have been missed. In such cases, how much does this missing data affect the detected k-
core structure? In some networks the missing data can drastically alter the output of an analysis
that uses the k-core structure; while it is relatively unaffected in some others. So, understanding

this resilience can help us gain better insight into data being analyzed.

In this dissertation we study three different type of changes to the k-cores structure of a graph: (1)
Core Structural Change (Chapter 4), (2) Core Minimization (Chapter 5), and (3) Collapsed k-Core
(Chapter6).

Core Structural Changes (Chapter 4): To study a network, we first need to collect the graph data
- which nodes are present, and how are they connected to each other? The collected data may be
imperfect, and in many cases, there may be missing data. In the chapter on core structural changes,

we consider the change in the relative ordering of nodes based on their core number core numbers



when edges (or nodes) are missing. The core numbers of nodes are aform of node centrality - nodes
with higher core number can be considered as more important than those with lower values. This
is important in a lot of applications such as finding anomalies [89], finding influential spreaders

[3, 50, 59] etc.

In Chapter 4, we study this type of change and propose a measure to quantify the resilience of a
graph to such changes. We also propose measures that are fast to compute and can serve as proxies
for this measure. Finally we propose an algorithm (MRKC) to add edges to a graph to maximize this

resilience [53].

Core Minimization (Chapter 5): We also come across applications where the ordering of the nodes
is not important - rather, what is important is the size of the k-core. Such applications includes
the study of ecology collapse [71], jamming transitions [70], etc. Zhu et al. studied this problem as
the core minimization — which are the b edges/nodes such that if deleted, the size of the k-core is

minimized?

In Chapter 5, we study the resilience of graphs to core minimization - specifically, given a graph how
can we characterize the extent to which it can be affected by core minimization if there are missing
data or targeted attacks based on previous works. We propose a measure that is efficient to com-
pute and, motivated by this measure, propose a novel algorithm (CIM) to maximize the resilience

of a graph to core minimization.

Graph Unraveling (Chapter 6: In this chapter, we do not deal with missing data but rather, the
natural tendency of the nodes in some type of networks to remain in the network only if they have
sufficient number of neighbors. In many networks users stay active due to their neighbors. For ex-
ample, a social network users remain active only if they have k active friends - otherwise they will
become inactive themselves. This might trigger a cascading collapse of the network until only the
k-core is left. So, the goal is to select a fixed number of anchor nodes (i.e., nodes that can be incen-

tivized to remain in the network) to maximize the size of the k-core [14, 15, 98].



Type of Change Affected Cause

Core Structural Change Order of nodes Missing data

Core Minimization Size of k-core Missing data or targeted attacks
Graph Unraveling Size of graph Cascading collapse

Table 1.1: Possible changes to a network’s k-core structure, their effects, and causes.

In Chapter 6, we study this problem of finding anchor nodes to maximize the size of the anchored k-
core. We propose a novel algorithm (RCM) that considers not only theimmediate effect of an anchor

node, but also the effect on subsequent anchor node selection.

Skeletal Core Graph (Chapter 7): Finally in Chapter 7, to investigate the graph structures that lead
to different behavior in response to these type of changes, we propose the idea of the skeletal core
graph. We define a skeletal core of a graph as a minimal subgraph that preserves nodes’ core num-
bers (i.e., removing even one edge will result in at least one node changing core number). Based on
the connections between the different k-shells,’ we describe two skeletal core graphs: the decen-
tralized skeletal core and the centralized skeletal core graph. We then show how these relate the

resilience of the k-core structure of graphs.
The major contribution of this dissertation can be summarized as follows:

1. We study the resilience of the k-core structure of graphs to different type of changes and how

we can measure and characterize them.

2. Fortype of change, we propose novel algorithms that tell us what small modification we can

make to the network to improve its resilience.

3. Finally, we propose a type of graph called the skeletal core graph to explain the behavior of

different graphs to these different type of changes.

'The k-shell is the subgraph induced by all the nodes that have a core number of k.



Chapter 2

Background

In this chapter we present the background required for the rest of this dissertation. We will present
a detailed discussion about graphs, centrality measures on graphs, dense substructures on graphs
and, finally, k-cores. We start with an introduction to graphs. Additional chapter-specific background

is provided in the appropriate chapters.

2.1 Graphs

A graph G is an ordered pair of disjoint sets (V, E) such that E C V2 [18]. The elements in V are
called the vertices or nodes; and those in E are called edges or links. If there is an edge (u, v) € E,
we say that the nodes u and v are connected (or adjacent, or neighbors) - in this case nodes u and
v are the endpoints of the edge (u, v). In some applications, we might allow for edges where both
the endpoints are the same nodes. This is called a self-loop; and in this work we assume that no
graph have self-loops. When we think about graphs, it is helpful to visualize it with circles (or dots)

as nodes and lines connecting them as edges.

Agraph can be used to modela number of real-world systems. Forexample, consider the world wide
web (WWW). The web pages can be represented by nodes and hyperlinks can be represented as

edges. Another exampleis a social network where nodes are people and edges represent friendship.



Similarly, various other real-world structures from diverse domains can be modeled by graphs. Due

to this the study and understanding of various properties of graphs is extremely important.

In some graphs, the direction of the edges is not important; thatis (v, v) = (v, u). An example
of such a graph is a friendship graph. These are called undirected graphs. Contrast that with the
example of the WWW. Inthis case, the direction of the hyperlinksisimportant; thatis (u, v) # (v, u).

This is called a directed graph. In this work, we assume that all the graphs are undirected.

Agraph G' = (V’, E')issaidtobeasubgraphof G = (V, E)if V/ C Vand E' C E.Asubgraph G’
that containsall the edges that connects all the edges that connects the nodesin V' in Giscalled an
induced subgraph; thatis £/ = (V/)? N E. There are cases where we are interested in studying only
a part of the graph - for example we might be interested in studying only the friendship network of a
certain age-group. Then, we can study the induced sub-graph of the nodes that we are interested in.
In other cases, we may need to study a subgraph because we do not have access to the entire graph
or the entire graph is too large. In such cases, we need to keep in mind the properties that we want

to study and select appropriate methods for generating the subgraph [9, 52, 55, 62, 63, 64, 95, 93].

In a graph the neighbors of anode v € V is the set of all the other nodes that have a edge to v. We

denote it denote by ['g(v) and formally,

Fe(v)={ueV:(v,u)e€E}.

If the graph G is clear from the context, we can drop the subscript G. The number of neighbors of

anode is called the degree of the node. That is,

d(u) = |F(u)]. (21)

Graphs can also be represented in matrix form. Assuming that | V| = n, the adjacency matrix, A, of



G isan n x nmatrix such that,

1 if(uv)eE.

0 otherwise.

Consider the example of the world wide web (WWW). When a user browses the WWW, she starts
from some webpage vy and clicks on a link to get to another vy, and clicks on another link on v; to
get to v, etc. Thisis called a walk on the graph. Awalk on a graph is defined as a sequence of edges
that connects as sequence of nodes starting from vy and ending at vy. It is not necessary for the
starting and ending node to be distinct, and the vertices that a walk passes through might also be
repeated. If we restrict a walk to only pass through each node once, we get a simple path. In many
graphs, the shortest path between pairs of nodes is an important property, and it is the minimum

number of nodes in a simple path from nodes vq to vy.

In some graphs it might not be possible to reach every node with a walk starting from some other
node. So, the idea of connected component is important here. A connected component is a sub-
graph such that every node in the subgraph can be reached by a walk from any other node in the
subgraph. We say that a graph (or subgraph) is disconnected if it has more than one connected

components.

2.2 Centrality Measures

As described in the introduction, an important concept when we use graph for analysis of a real-
world network is the concept of centrality - which are the important/central nodes? Various mea-
sures have been proposed that capture differentideas of importance - there are some that captures
importance with the idea of popularity, some consider flow in an network, and others looks at paths

in the networks. In this section, we discuss some of the important centrality measures.



Degree Centrality: The degree centrality of a node v is the fraction of nodes that are connected
to v. For v € V, the normalized degree centrality is given by M—V_)l In many social networks, the
degree centrality is aa good measure of importance because important people generally have more

connections.

Eigenvector Centrality: In many cases, only the number of connections is not a good indicator of
importance. For example, in the WWW a webpage v may be connected to a lot of other web pages,
but if those are not important, v is likely not as important as another u that has fewer, but more im-
portant, connections.. This is the motivation of the eigenvector centrality [73], and the eigenvector

centrality of node v defined as the v-th entry of the vector x suchthat A - x = A - x.

Betwenness Centrality: In acommunication network, the shortest paths are veryimportant. Thisis
theidea behind betweenness centrality, which is defined as the sum of the fraction of shortest paths
that pass through the node [37]. Because calculating the betweenness centrality requires compu-
tation of shortest path between all pairs of nodes, it is very expensive for large graphs. However,

approximate methods have been proposed [21].

Closeness Centrality: Another centrality measure that makes use of the shortest paths is Closeness
Centrality. The closeness centrality of a node is defined as the reciprocal of the average shortest
path length to all nodes that can be reached by a walk [13]. Like in the case of betweeness centrality,

computation of closeness centrality is also very expensive on large graphs.

2.3 Dense Substructures

There are many ways to describe hierarchical structures in graphs, such as k-core [88], k-truss [30],
k-peak [44], communities [74] etc. In this section, we will provide some background on some of

these structures.



2.3.1  Community

Oneofthe mostcommonly used dense substructure in graphs are communities. Communities have
many definitions, butin general, a good community is one that has more internal connections than
expected. In [74] Newman & Girvan proposed ‘modularity’ as a measure of the strength of commu-
nity structure, and algorithm based on modularity maximization have become some of the most

popular techniques for community detection.

Various community detection methods based on modularity maximization has been proposed [28,
72,16, 77]. However, one of the most popular is the ‘Louvain modularity maximization’ proposed by
Blondel et al.. This is a greedy algorithm to find communities in a network by grouping nodes in
such a way as to maximize the modularity. Community detection methods based on modularity
suffers from the resolution limit [56]; nonetheless they remain popular for their effectiveness and
efficiency. Other methods of community detection includes random walk based methods [17, 84],

statistical inference [78, 47] etc.

2.3.2 k-Core

The k-core of a graph, G = (V/, E), is the maximal subgraph such that every node in the subgraph
has at least k neighbors in the subgraph [88, 66]. If a node belongs to the k-core but not in the
(k 4 1)-core, we say that the coreness (or core nummber) of the nodes in k. We will denote this by,

k(u, G) foru € V. The coreness of a node can also be considered as a centrality measure.

The subgraph induced by the by the nodes with coreness of k is called the k-shell. Note that the
k-core and k-shell need not be connected. In a graph the largest value of k such that the k-core is
not empty is called the degeneracy of the graph, and the associated core is called the degeneracy

core.

Figure 2.1 shows a toy example demonstrating the different k-cores and k-shells. We can see that



Figure 2.1: An example graph showing the k-cores and the k-shells. The subgraph induced by the red
nodes is the 3-core, the one induced by the red and green nodes is the 2-core, and the entire graph is
a 1-core. The red, green and blue nodes by themselves induces the 3, 2, and 1-shells.

all the red nodes have 3 other red nodes as neighbors. So, they form the 3-core. Similarly, the green
nodes have 2 neighbors that are either red or green; and thus form the 2-shell. Together with the
red nodes, they form the 2-core Finally, the entire graph forms a 1-core. The red, green and blue

nodes by themselves induces the 3, 2, and 1-shells.

The process of finding all the k-cores in a graph is called k-core decomposition. There is an efficient
algorithm for performing a k-core decomposition [10]. The algorithm works by iteratively removing
nodes that have less than k neighbors and stopping when there are no more nodes to remove. The

running time of this algorithm scales linearly with the number of edges.

n



Chapter 3

Related Works

In this chapter, we describe previous literature related to k-core and related areas.

3.1  k-Core Decomposition

Erdos and Hajnal [34] described the first k-core related concept in 1966, defining the degeneracy of
the graph as the maximum core number of a vertex in the graph. Matula introduced the min-max
theorem [67] for the same concept, but in the context of graph coloring. Roughly simultaneously,
Seidman [88] and Matula and Beck [66] defined the k-core subgraph as the maximal connected

subgraph where each vertex has at least degree k.

Seidman stated that k-cores are good seedbeds that can be used to find further dense substruc-
tures, but did not provide a principled algorithm for finding k-cores [88]. Matula and Beck [66], on
the other hand, give algorithms for finding the core numbers of vertices, and for finding all the k-
cores of a graph (and their hierarchy) by using these core numbers, since there can be multiple

k-cores for the same k value.

Batagelj and Zaversnik introduced an efficient implementation that uses the bucket data structure
to find the core numbers of vertices [10]. In contrast to previous work [88, 66], they defined the k-

core as a possibly disconnected subgraph.
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The k-core decomposition has been used in numerous applications, including network visualiza-
tion [5, 99, 102], studying the topology of large networks (such as the Internet) [8, 24], accelerating

community detection [79], and studying the resilience of communities [38].

k-cores have been used for applications in a variety of scientific fields. Altaf-Ul-Amine et al. pro-
posed a method for predicting the functions of proteins based on the k-core decomposition of the
protein-protein interaction network [4]. In [70], Monroe et al. explained jamming transitions (when
particles are packed such that movement is not possible) by the emergence of the k-core in the
particle contact network. In [71], the authors used the k-core to predict the structural collapse of

ecosystems.

Thanks to the practical benefit and linear complexity of the k-core decomposition, there has been
a great deal of recent work in adapting k-core algorithms for different data types or setups. Cheng
etal. [25] introduced the first external-memory algorithm, and Wen et al. [94] and Khaouid et al. [49]

provided further improvements in this direction.

To handle the dynamic nature of the real-world data, Sariyuce et al. [85] introduced the first stream-
ing algorithms to maintain the k-core decomposition of a graph upon edge insertions and removals.
Lie et al. [58], Zhang et al. [101], and Esfandiari et al. [35] have also introduced methods to maintain

k-core structure in the case of streaming data.

Motivated by theincomplete and uncertain nature of the real network data, O’Brien and Sullivan [76]
proposed new methods to locally estimate core numbers (K values) of vertices when the entire
graph is not known, and Bonchi et al. [20] showed how to efficiently perform the k-core decompo-

sition on uncertain graphs, which has existence probabilities on the edges.

There has been a lot of works on extending the notion of k-cores to other network settings. Sariyuce
et al. generalized k-cores to higher order structures [86], and Giatsidis et al. adapted the idea of k-

cores to directed and weighted graphs [39, 40].
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3.2 Applications of k-Core

In [51], the authors studied an extremist web forum - the nodes are users and message threads; and
there is an edge between a user and message thread if the user posted in that thread. They found
that the users who has high core number (k = 8 in their dataset) are the influential advisors within

the extremist network.

k-cores can be used to find bots in social networks. In [89], Shin et al. developed a method to find
anomalous nodes (bots) in a social network based on their core number and degree. They found
that, in general, nodes in a social network follows a ‘mirror pattern’ - the core number of a node
is strongly correlated with its degree. They found that anomalous nodes deviates from this pattern

and proposed a method to measure the deviation from the mirror pattern to detect anomalies.

k-core has also been used for anomaly detection in transcriptional regulatory networks [91], be-
havior of customers in online banks [90], online user generated contents [19], internet routing [69],

wallets on crypto-currency platform [80] etc.

The study of influential spreaders in social networks is another area where k-cores have been ap-
plied with promising results. In [3], the authors proposed a method of assigning edge weights in an
online social network. They, then, proposed a weighted k-core and showed that this method can
capture influential spreaders more effectively than other measures like PageRank, degree centrality

etc.

In [82], the authors evaluated the effectiveness of different types of centrality measures in finding
the different types of influential spreaders using the SIR model [48]. They found that the influential
spreaders identified by k-core are the ones that can reach the furthest distance in the graph the
fastest. In addition to these works, there has also been a plethora of works that uses k-core and

variants to identify influential spreaders [33, 43, 59, 61, 89, 96].

Otherapplications of k-coreincludes network visualization [7, 23, 32, 75,100], studying the topology



of large networks (such as the Internet) [6, 24], accelerating community detection [79] etc.

3.3 Changes to k-Core Structure

Data collection is not always perfect - sometime there are missing edges or nodes. It is even possi-
ble that there are missing data due to attacks. In this section, we present some of the recent works

on the different type of changes to the k-core structure due to missing data.

3.3.1  Core Structural Change

There are only a few works that study the sensitivity of the order of nodes based on their core num-
ber. Most closely related to our work is the study by Adiga and Vullikanti, investigating the robust-
ness of the top cores under sampling and in noisy networks [1]. They reported that the success
in recovering the top cores under sampling and noise exhibits non-monotonic behavior with the

amount of samples and noise.

In [53], we proposed a measure for the resilience of the k-core structure and a method of inserting
edges to improve the resilience. In our work, we follow a more general approach and quantify the
resilience of the core numbers, and the impact of the neighbor vertices on the stability. In addition,
we propose edge insertion heuristics to strengthen the core numbers while preserving the existing

core decomposition.

3.3.2 Core Minimization

There have been a few recent works that core minimization, but most of them focus on finding
nodes/edges to remove that minimizes the k-core the most. Zhang et al. [99] studied this prob-
lem with the objective of finding the critical users. They defined the critical users as those whose

removal from the network will lead to the size of the k-core being minimized. They proposed a
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greedy algorithm called CKC to efficiently find a given number of critical users.

Zhuetal. [104] also studied the problem of k-core minimization. What differentiates their work from
the previous one was that they were focused on finding the critical edges - that is, the edges whose
removal leads to the minimization of the k-core. Medya et al. [68] also worked on the problem of
finding the critical nodes that leads to core minimization but approached it from a game-theoretic

perspective.

Schmidt et al. [87] studied the problem of finding the minimal set of nodes whose removal destroys
the k-core. They relate it to the problem of finding the minimal contagious set [31, 81, 45, 36]. They
provided a upper bound on the size of the minimal contagious set, and provided a heuristic based

approach to finding it.

3.3.3 Graph Unraveling

The cascading collapse of a graph due to users, with not enough engagement leaving, was first de-
scribed by Bhawalkar et al. [14] as the anchored k-core problem. The problem was inspired by the
observation that a user in a social network is motivated to stay only if her neighborhood meets
some minimal level of engagement: in k-core terms, she will stay if k friends are also in the net-
work. Bhawalkar et al. defined the anchored k-core as the subgraph that is computed using the
usual k-core decomposition algorithm, but with the modification that selected ‘anchor’ nodes are
not deleted during the process. These anchored nodes may represent, for example, nodes that are
recruited to remain active in the network, even if their friends are inactive. The anchored k-core
problem, then, is the problem of selecting a specified number b anchor nodes such that the num-

ber of nodes in the anchored k-core is maximized.

Bhawalkar et al. showed that for a general graph the anchored k-core problem is solvable in polyno-
mial time for k < 2, butis NP-hard for k > 2 [15]. They also showed that the problem is W[2]-hard

with respect to the number of anchors and Chitnis et al. showed that the problem is W[1]-hard with



respect to the number of nodes in the anchored k-core [26].

Zhangetal. proposed a greedy algorithm, called OLAK, for the anchored k-core problem [98]. OLAK
operates over by, iterations, where b,y is the allowable number of anchor nodes. In each iter-
ation, a node that is not in the anchored k-core but which would generate the largest number of
followers if anchored is selected as the next anchor. Because only a single anchor node at a time is
considered, and only nodes from the (k — 1)-shell' can become followers when anchoring a single

node, OLAK considers only follower nodes from the anchored (k — 1)-shell during each iteration.

Zhou et al. [103] studied a problem that is close to the anchored k-core problem - which edges
should be added to maximize the size of the k-core. However, this is fundamentally different from
the anchored k-core problem because the graph cannot be modified in the anchored k-core prob-

lem.

'"The k-shell is the subgraph of the k-core \ (k — 1)-core.
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Chapter 4

Core Structural Changes

In many network applications, we may encounter the problem of missing edges or nodes. For ex-
ample, in technological networks, edges may be lost due to dropped communication links, and in
router networks, nodes might drop dueto routers being turned off. Or, in the case of social networks,

edges or nodes might be missing during the data collection process.

It is thus valuable to understand the resilience of the k-core of the network to missing edges and
nodes. In this section, we introduce the concept of core resilience, which quantifies the degree to
which a network’s core structure changes when nodes oredges are missing. In this case, we consider

only the case when nodes and/or edges are missing uniformly at random.

The first step in understanding how networks’ core structure change due to missing edges and

nodes is to define a metric to measure this. To this end, we propose the Core Resilience.

To demonstrate, consider the graph shown in Figure 4.1a. The red, green and blue nodes have core-
ness of 3,2 and 1 respectively. If the dashed line is deleted, only one node changes coreness from
3to 2. Contrast this with the graph in Figure 4.1b. In this case, if the dashed edge (or rather any edge
between red nodes) is removed, all the red nodes changes coreness from 3 to 2. So, the second
graph has a lower core resilience. This example also shows how inaccurate a study that uses k-core

can be if the original graph has very low core resilience.



(a) Examp le of case where k-core structure does not change a lot
l Ve /

V] ey

(b) Examp/e of case where k-core structure changes a lot.

Figure 4.1: Toy examples showing a case where k-core structure does not change much (Figure 4.1a),
and one where it changes a lot (Figure 4.1b).

4.1 Core Resilience

Formally, we define the (r, p)-core resilience of a network G as the rank correlation between the top
r% nodes (as ranked by core number) in the original network to that of the network after p% of the
the edges or nodes have been removed uniformly at random. We denote the (r, p)-core resilience
of a graph G to edge deletion by REP(G), and that due to node deletion by R (G). We will
use R\ to refer to (r, p)-coreresilience in general. The intuition behind the core resilience is that
the ranking of the nodes by their core number reflects the k-core hierarchy - nodes that are ranked
higher (in descending order) are higher up in the hierarchy. So, a measure of rank correlation with

and without the missing data can measure the change in the k-core hierarchy.

Let G = (V, E) be a network, and let G” represent the network obtained removing p% of the
edges (or nodes) from G randomly. Let the top r% nodes (by core numbers) in G be denoted by

V,. Define a set MP such that,

MP = {(k(u, G),k(u, G")) - u e V,}, (4.1)



where k(u, G) is the core number of node u in network G'.

Then, the (r, p)-core resilience of G is given by,
RP(G) =7 (MP) (4.2)

where 7,(+) is the modified Kendall’s tau-b rank correlation?. The definition is not tied the Kendall’s

tau-b rank correlation. We can replace 75 (-) by any other measures of rank correlation.

While R;{¥ gives rich, detailed insight into the core resilience of the different cores of the network
at different levels of edges or nodes deletion, in some applications it may be preferable to use a
simpler measure. We thus define an aggregate measure, the (r, p;, pu)-core resilience. We define
the (r, p;, pu)-core resilience of a network as the mean (r, p)-core resilience as we vary p from p; to
p.. We denote the (r, py, py)-core resilience of G by R;P""(G).

PR (G)dx

R'r(p"p“)(G) = 2P (4.3)
Pu — Pi

In practice, we approximate the integral in Equation 4.3 by a summation with step size 1.

It should be noted that there are a number of graph robustness measures, but the concept of core
resilience specifically concerns the k-core structure of the network, and so is not directly related
to these existing measures. To verify this we compared the Natural Connectivity [46] to the Core

Resilience of various real-world networks, and did not observe any significant correlation.

4.2 Motivating Applications

The concept of Core Resilience is helpful in applications where the k-core structure of the network

under missing edges or nodes is important. In this section we will discuss two such applications: (1)

'If a node has been deleted, its core numberin GP is 0.
2We make the modification to count ties as concordant pairs.
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Figure 4.2: Similarity between anomalies (Figure 4.2a) and communities (Figure 4.2b) found in the
full network G and the sample G’ for different real-world networks. The x-axis is the Core Resilience
(Rgg°'5°> (G)) of the different networks against node deletion, and the y-axis is the Jaccard Similarity.
As expected, in the networks with high Core Resilience, the results on the sample is more similar to
that on the full network in general.

anomaly detection, and (2) community detection.

Assume that we have a network G = (V, E) and a subgraph G" = (V’, E’), where G’ is the result

of random walk on G.

If we perform anomaly detection [89] or community detection [79] on G’, how well do the results
on G’ reflect the true anomalies and communities in G? Because these applications make use of
the k-core structures, we expect the results to more closely match that of the original graph if the

original graph has high core resilience.

We verify this experimentally on multiple real-world networks, and the sample we use is generated
by a random walk with half the number of nodes in the network as the budget. (The dataset we use

are given in Table A.1.)
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4.2  Anomaly Detection

In this application, we perform anomaly detection on the full network G using the CORE-A method
proposed in [89] to find the anomalous nodes V,,. This method operates on the intuition that nodes
with high core numbers also have high degrees. So for a given node, the difference between the
ranking in terms of the degree and core number (referred to as dmp in [89]) should be fairly small.
However,anomalous nodes (forexample, someonein a social network who paid to get more follow-
ers) deviate significantly from this pattern. By looking at the dmp values of the nodes, the anomalies

are identified in the CORE-A algorithm.

Wefind anomaliesin the subgraph G’ with the same method, and referto the set ofthese anomalies

as V. We then use Jaccard Similarity to determine how close the result on G’ is to thaton G.

VN V.|
SV vy = — Va0 Ve
Vo Vo) = v vy v

We present results in Figure 4.2a. We can observe that the anomalies found in the sample are more

similar to those in the full network for networks with high core resilience.

4.2.2  Community Detection

By finding a central region of the network, k-cores can be used to accelerate community detection.
We perform community detection using the method proposed in [79] and the Louvain method on
the original network G. We denote the communities in G by C. Then, we perform community de-

tection with the same method on G’, to get the communities C'.

We compute the similarity between C and C’ as the mean Jaccard Similarity between the commu-
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nities in C’ to its best match community in C.

3 [cn (e, O

Je(€. € lcu(B(c, C)n V|

|C’|
cec’

where B(x, Y)i

and there are no other x’ € X that mapsto y.

Figure 4.2b shows the results of these experiments on community detection. In the networks with
higher Core Resilience, the nodes that are grouped together in the same community in the sample
are more frequently grouped together in the original communities as well. The only exceptions to
this are two P2P networks, for which the similarity is low even though they have relatively high core
resilience. This is because there are very few communities in the original network, but only a single,

giant community. So, 8(c, C) = (@ formost c € C'.

These two applications demonstrate that if we know the Core Resilience of a network, we can use
it as an indicator of how much we should expect core-based observations on incomplete data to

reflect those on the original.

4.3 Characterizing Core Resilience with Node Level Properties

Computingthe (r, p)-coreresilience of a network requires repeated computation of the k-core. Be-
cause the time complexity of the k-core decomposition algorithm is O(| E|), it may not be practical
to compute the (r, p)-core resilience in larger graphs. Itis thus valuable to characterize the core re-
silience of the network without directly computing the (r, p)-core resilience (and, as we will see,
this characterization allows us to develop an effective algorithm for improving a network’s core re-

silience).

In this section, we propose two node properties based on a network’s structure: (1) Core Strength,

and (2) Core Influence. The core strength of a node is a measure of how likely its core number will
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decrease when edges are deleted from the network. The core influence of a node is a measure of the
extent to which nodes with lower core numbers depend on that node for their own core numbers.
In Sections 4.3.3 and 4.3.2, we describe the core influence and core strength properties in more

details.

We also define an overall network property, based on the core strength and core influence of the
nodes in the network. We describe this in more detail in Section 4.3.4. We perform experiments on
real world networks of various types to show the relationship between these measures and the core

resilience of the network.

4.3.1 Notations

Before describing the Core Influence and Core Strength properties, we first introduce some nota-
tions. We split the neighbors of u € V into three sets: (1) A (u, G), (2) A—(u, G),and (3) A~ (u, G)
representing, respectively the neighbors of u with core number less than, equal to, and greater than

that of u.

A(u,G)={verl(u):kr(v)<r(u)} (4.4)
A_(u,G)={verl(u):k(v)=r(u)} (4.5)
As(u, G)={verl(u):k(v)>r(u} (4.6)
A~(u, G) = A_(u, G) U A~ (u, G) (4.7)

We also define a set Vs of nodes where each node u € Vj has at least one neighbor node, v, with

alarger core number, i.e., K(u, G) < K(v, G). That also means the following;

Vs ={ueV:|A_(u, G)| < k(u G)}. (4.8)
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4.3.2  Core Strength

The Core Strength of node u is the minimum number of u’s neighbors that need to drop to a lower

core for uto also drop to a lower core.

We denote the core strength of uin G by CS(u, G). The assumption that that the coreness of
the neighbors does not change is not necessarily required, but it makes computation of the core

strength very fast.

For all nodes u in network G, u gets its core number due to connections to As (u, G). Thus, the

core strength of node u € G is given by,

CS(u, G) = |As(u, G)| — k(u, G) + 1. (4.9)

Intuitively, the core strength of a node u describes how likely it is to retain its core number when it
loses connections. A node with a high core strength has many redundant connections (i.e., many
connections to other nodes with equal or higher core number), and so is less likely to drop its core

number if its connections are deleted.

Algorithm 1 The algorithm to calculate the core strengths of all the nodes.
1: function CALCULATECORESTRENGTH(G = (V/, E))
2: k < CalculateCoreNumber(G)
3 CS «+{}
4: foru e Vdo
5: CS[u] + {veTl(u):k(v) >r(u)} —r(u)+1
6:
.
8

end for
return CS
. end function

Theorem 4.1 (Complexity of Algorithm 1). The time complexity of Algorithm 1is O(|E|); and the

space complexity is O(| V).

Proof. Given anetwork G = (V/, E), computing the core strength of all the nodes is possible once
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the k-core decomposition is performed, which takes O(| E|) time. For each node we need to count
the number of neighbors with greater or equal core number, which is also linear in the number of

edges, O(|E|) . So, the time complexity of computing the core strength of all nodes is O(| E|).

In Algorithm 1, the only additional space required is to store the core strengths of all the nodes. So,

the space complexity is O(| V). O

4.3.3 CorelInfluence

The Core Influence of a node u in network G is a measure of the extent to which u affects the core

numbers of neighbor nodes with lower core numbers. We denote it with C/(u, G).

Foranode u, the set of nodes that ‘immediately’ depend on v fortheir core numbersis A<(u, G),i.e.
the neighbors of similar or lower coreness. If there is an edge (u, v) such that k(u, G) = k(v, G),
both uand v influences each other for their coreness.

In order to compute core influence, the first step is to create a matrix M of size | V| x | V| such that,

;

1 ifu=v
Muy = 728 elseif (u,v) € E Ak(u, G) < k(v, G) - (4.10)
0 otherwise

\

Let r be the eigenvector of the matrix M. Then, the core importance of node u is r,,.
Theorem 4.2 (Complexity of Algorithm 2). The time complexity of Algorithm 2 is O(| E|); the space

complexity is O(| E|).

Proof. To compute the approximate core influence of all nodes in G = (V/, E), we need to per-
form k-core decomposition first (O(| E[)). The matrix M can be created in O(|E|). With the power

method, the eigenvector can be calculated in O(|V/]). So, the overall computation takes O(| E]).
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Algorithm 2 The algorithm to calculate the core influence of all the nodes.
1. function CALCULATECOREINFLUENCE(G = (V/, E))

2: k < CalculateCoreNumber(G)
3 M < 0)v|xv|

4 for (u,v) € Edo

5 if x(u) > k(v) then

6: X+ {werl(v):r(w)>r(v)}
7 My, < %

8 end if

9: end for

10: r < EigenVector(M)

n: Cl + {}

12: foru e Vdo

13: Clu] < r,

14: end for

15: return C/

16: end function

In Algorithm 2, the space needed to store the matrix M is O(| E|) assuming we store it as a sparse

matrix. So,t he space complexity is O(|E|). O

Approximate Core Influence: In many applications we found that the influence of a node to other
nodes of higher coreness is more importance. So we can discard the contributions from the nodes
of same coreness to approximate the core influence. In that case, for (u, v) if k(u, G) = (v, G),

we set M, , = 0. In this case, we can guarantee convergence in one step.

4.3.4 Core Influence-Strength

Core Strength and Core Influence describe node level properties. To characterize the network, we

need an aggregate measure that describes the network level property.

Assume that Cl¢(G) is the f percentile of core influence of all nodes in G. Let S¢(G) be the set of

nodes in G with core influence equal to or greater than Cl¢(G).

Si(G)={ue V:Cl(u G) > Cls(G)} (4.m)
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Then we define the Core Influence-Strength as the mean core strength of S¢(G). We denote it by

CISH(G),

> uesi) CS(u, G)

56 =5, @)

(4.12)

If a network has high CIS¢(G) for high f, this means that the most influential nodes are unlikely to
drop their core number when they lose connections to their neighbors. We expect such networks to
have high core resilience. In contrast, the networks for which CIS¢(G) is low are expected to have

low core resilience.

4.3.5 Experiments

To verify that CIS reflects actual core resilience, we perform experiments on 22 real-world networks
of different types (Table A.1). These networks were downloaded from SNAP? and Network Reposi-
tory*. The Core Resilience <R'1(§é5°> (G)) vs Core Influence-Strength (ClSgs (G)) for edge deletion is

shown in Figure 4.3a, and that for node deletion is shown in Figure 4.3b.

In these figures, each point is the core resilience of a network (with the network type color-coded),
and is the result of 10 experiments. We observe that, as expected, the resilience is higher for net-
works with high Core Influence-Strength. However the relation between Core Influence-Strength
and Core Resilience is sub-linear - that is it increases rapidly for low values, but for networks high
Core Influence-Strength the difference in Core Resilience is not significant. Additionally we observe
that the Core Resilience of P2P networks generally have lower Core Resilience, while that of SOC

networks tend to be higher in terms of both edge and node deletion.

*https://snap.stanford.edu/
“http://networkrepository.com/
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Figure 4.3: Core Resilience (R'l(&m) (G)) against Core Influence-Strength (ClSes ( G)) for various net-

works. Figure 4.3a shows the core resilience against edge deletion vs Core Influence-Strength, and Fig-
ure 4.3b shows the core resilience against node deletion vs Core Influence-Strength. We can observe
that the Core Resilience is higher for networks with higher Core Influence-Strength, which is consistent
with what we expect.

4.4 Improving the Core Resilience of a Network

Now that we have defined the core resilience of a network and proposed measures to characterize
the core resilience of a graph, in this section we address the problem of ‘/f we can add b edges, to
improve the core resilience of a network without changing k-core structure, where should we add the

edges.

Ourinitial results in Section 4.3 suggest that edges should be added to bolster the nodes with high
Core Influence; i.e., give them higher Core Strength, in order to increase the core resilience of the

network as a whole. We propose a new algorithm called Maximize Resilience of k-core (MRKC).

Node deletion can be considered a special case of edge deletion, as deleting a node is equivalent
to deleting the edges of that node (Appendix A.1). For this reason, the algorithm for improving the

core resilience of a network against edge deletion is the same as for node deletion.

The MRKC algorithm consists of two steps: (1) generating candidate edges and (2) assigning edge
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priority. We discuss these steps in detail in Sections 4.4.1 and 4.4.2 respectively.

4.41 Generating Candidate Edges

Given anetwork G = (V/, E), the first step in MRKC is to determine which edges can be added to
the network without changing the k-core structure. Let G’ be the graph afteradding the edges, then

the k-core structure does not change if,

VYu,v eV, k(u, G)Ok(v, G) = «(u, G"Ok(v, G), (4.13)

where [J can be <, > or =. There are two ways to satisfy this:
1. The coreness of no nodes changes. Thatis,Vu € V, k(u, G) = k(u, G).

2. If the coreness of node u increases?, all the nodes with higher or same coreness also has to

increase by the same amount.

Because changing the coreness of a lot of nodes may not be possible in many cases (because we
might need to add more edges than allowed), we make sure that the coreness of no node change

during the edge addition.

Let E be the set of edges that do not existin G. The size of £’ is on the order of | V|2, This is clearly
too many edges to check, so we need a method to quickly filter out the edges that would change

the coreness if added to G.

MRKC accomplishes this by adapting the purecore-based method described in [85], which examines
the endpoint of each potential edge (the purecore of a node uisthe set of nodes that have the same

coreness as u and could be affected by a change in the coreness of u).

Letusdenote the purecore of node gin graph G by PC(u, G).Wesplit E'into two sets Ej,, and Egjs,

5|t is not possible for coreness to decrease due to edge addition.
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suchthat, k(u, G) = k(v, G) forall (u, v) € Egm; and k(u, G) # k(v, G) forall (u, v) € Egr.

From the set Egm, we generate subsets E., - such that:

im

1. UEL, = Esm;i.e.isalledges in Egp, arein some E.

sim*

2. EL_NEZ =0;ieal E

S sim

are disjoint.

3. No two edges in E/. are connected via the nodes that have same core number with the

sim

endpoints of those edges.

Because all the edges have endpoints that are not in the other’s purecore, we can insert E' to G,
and if there is a node that changes coreness, we can pinpoint which edge in E’ caused it. Assume

that there are n;,, such subsets.

Similarly, we split Egr into subsets E/,.. in the same way as Eg;,, but with additional conditions that
if there are two edges in E/, that have the same endpoints, the other two nodes cannot have the

Same coreness.

Again in this case if on adding EJ;+ to G, the coreness of any node changes, we can identify which

edge in E/,- caused that. Let us assume that there are ng;r such subsets.
Then, instead of checking all | E’| edges one-by-one, we need to check only ngj, + ngir times.

We can further speed up the generation of the candidate edges. Assume that E! is the set of nodes
currently being tested. Let kpnin and knmax be the minimum and maximum core number of the nodes
involved in E'. Then, adding the E' can only change the core numbers of nodes u where k., >

kU, G) > Kmax.

So, instead of running k-core decomposition on the entire network after adding the edges, we can
add the edges to the k,,-core subgraph of the original network, and run the k-core decomposition
on the subgraph. Again because, no node with core number above k., will be affected, we do not

need to run the k-core decomposition to completion - we can stop after the k,.x-core has been
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found.

4.4.2 Assigning Edge Priority

After obtaining the set of edges that can be added to the network, MRKC selects which subset of
edges to add. To do this, MRKC assigns each edge (u, v) € E’ a priority based its endpoints v and v.

As discussed before, the goal is to improve the core strength of the nodes with high core influence.

Cl(u)
CS(u)-

So the priority value for each node v is assigned as

There are three cases that needs to be considered based on the coreness of the endpoints, v and

v: (@) k(u, G) > k(v, G), (b) k(u, G) < k(v, G),and (c) k(u, G) = k(v, G).

In the case of k(u, G) > k(v, G), addition of the edge (u, v) will only affect CI(v, G); Cl(u, G)
will be unaffected. On the other hand, if k(u, G) = k(v, G), both Cl(u, G) and Cl(v, G) will be

affected by addition of (u, v). So, for all (u, v) € E’, MRKC assigns priority as,

(

e if i(u, G) < K(v, G)
pluv) = & if k(u, G) > k(v, G) - (4.14)

CIwG) |, CI(v.G) B
o) T ore  fR(u, G) =k(v, G)

At each step, MRKC selects the edge with the highest priority and adds it to the network until we
reach the budget, i.e., maximum number of edges allowed to be added. The set E’ needs to be
updated after any edge (u, v) is inserted, but we can make it efficient by checking only for those
edges that has an endpointin PC(u, G) U PC(v, G). Updates to core influence and core strength

can also be done in similar way.
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Edge Deletion (REL*?) Node Deletion (R
Type  Network Original MRKC RANDOM DEGREE CORE | Original MRKC RANDOM DEGREE CORE
AS_733_19971108 0.58 0.65 0.60 0.61 0.58 0.35 0.44 0.40 0.38 0.36
AS AS_733_.19990309 0.62 0.72 0.65 0.67 0.62 0.36 0.48 0.41 0.43 0.37
Oregon1_010331 0.66 0.78 0.7 0.72 0.72 0.42 0.49 0.45 0.44 0.45
Oregon1_110428 0.67 0.79 0.72 0.72 0.71 0.41 0.50 0.46 0.42 0.44
BIO BIO_Dmela 0.80 0.84 0.82 0.83 0.83 0.48 0.55 0.49 0.49 0.48
BIO_Yeast_Protein 0.49 0.711 0.55 0.57 0.56 0.34 0.47 0.38 0.37 0.37
CA_GrQc 0.75 0.81 0.74 0.76 0.74 0.43 0.51 0.43 0.42 0.42
CA CA_HepTh 0.69 0.78 0.7 0.70 0.72 0.40 0.45 0.38 0.40 0.41
CA_Erdos992 0.69 0.72 0.70 0.69 0.71 0.44 0.49 0.42 0.43 0.43
NE INF_OpenFlights 087 0.89 088 087 087 | 05 057 05 052 0.5
INF_Power 0.49 0.77 0.36 0.42 0.38 0.29 0.46 0.26 0.25 0.27
P2P_Gnutellao8 0.73 0.79 0.72 0.75 0.73 0.40 0.51 0.43 0.45 0.43
P2P P2P_Gnutellang 0.71 0.78 0.73 0.72 0.73 0.39 0.50 0.42 0.45 0.43
P2P_Gnutella2s 0.69 0.81 0.71 0.73 0.74 0.39 0.47 0.41 0.40 0.41
SOC_Hamster 0.84 0.86 0.85 0.85 0.85 0.50 0.54 0.52 0.52 0.50
SOC  SOC_Wiki_Vote 0.76 0.82 0.75 0.77 0.77 0.43 0.51 0.45 0.45 0.47
SOC_Advogato 0.88 0.91 0.89 0.88 0.89 0.52 0.61 0.52 0.50 0.51
TECH_Ppg 0.81 0.86 0.81 0.81 0.82 0.47 0.53 0.49 0.50 0.51
TECH TECH_Router_rf 0.83 0.86 0.83 0.83 0.83 0.49 0.55 0.51 0.48 0.48
TECH_Whois 0.89 0.91 0.89 0.89 0.89 0.52 0.65 0.57 0.59 0.59
WEB WEB_Spam 0.87 0.90 0.88 0.87 0.87 0.51 0.56 0.51 0.52 0.52
WEB_Webbase 0.61 0.75 0.60 0.59 0.60 0.38 0.45 0.42 0.43 0.44

Table 4.1: Improvement in Core Resilience of the top 50% nodes (by core number) on adding 5% new
nodes by MRKC, random (RANDOM), highest mean degree (DEGREE) and highest mean core number
(CORE) of the endpoints. It can be observed that MRKC outperforms all the baselines.
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4.4.3 Experiments

To evaluate MRKC, we added up to 5% new edges to real-world networks to improve their core

resilience.

The networks we used for our experiments are given in Table A.1. Adding edges to improve core
resilience is applicable to only some type of networks. For example, in social networks, we cannot
force people to form connections. However, we included these kind of networks in our experiments

for the sake of completeness.

For comparison, we consider three baseline methods where the edges in E” are added (1) randomly
(RANDOM), (2) in decreasing order of the sum of the degrees of the endpoints (DEGREE), and (3) in
decreasing order of the sum of the core numbers of the endpoints (CORE). We run each experiment
10times, and present the mean values. In Figure 4.4, we show the comparison of the core resilience
of different networks with edges added by MRKC and the three baselines. The y-axis is the core
resilience, and the x-axis is the percentage of edges added. Because of space limitations, we cannot
present the plots for all the networks, and so we give them in Table 4.1 when 5% new edges are

added.

We observe that MRKC outperforms all considered baseline methods. In cases where the initial core
resilience is low, MRKC can improve it by a large amount (for example in INF_Power, BI0_Yeast).
However, if a network already has high core resilience to begin with, MRKC cannot improve it by

much (as in INF_OpenFlights, TECH_Whois).

In the case of AS networks, the core resilience (with respect to both edge deletion and node dele-
tion) is low, and after adding the edges by MRKC, the core resilience is increased significantly - up
to 17.9% and 25.7% for edge deletion and node deletion respectively. However, for the TECH net-
works, the core resilience against edge deletion is already high. So on adding edges by MRKC, we

could achieve an improvement of only 3.4%.
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Figure 4.4: Change in Core Resilience against percentage of new edges added for different real-world
networks. The y-axis is the core resilience and the x-axis is the percentage of new nodes added by the
different algorithms. The figures in the left column (Figures 4.4a, 4.4c, 4.4e, 4.4g) are for edge deletion,
and those in the right column (Figure 4.4b, 4.4d, 4.4f, 4.4h) are for node deletion. In all cases, MRKC
outperforms the baselines.
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Figure 4.5: Running time of our method for improving core resilience (MRKC) on different networks. The
x-axis is the amount of new edges added (in %), and the y-axis is the time taken to add the edges (in
seconds).

In the plots shown in Figure 4.4, we observe that the rate of improvement of MRKC in the case of
node deletion is lower than that for edge deletion in the same network. This is because the core

resilience due to edge deletion cannot be less than that of node deletion (Equation A.1).

Running Time: In Figure 4.5, we show the time taken to add the new edges according to our method
for four networks. The x-axis is the amount of new edges added (in%), and the y-axis is the time

taken to add the edges. The values are the means over 10 runs.

MRKC checks for all edges that can be added without changing core number in the first step. This is
why we observe in Figure 4.5 that the plots do not start at the same points. After theinitial candidate
edges generation, we no longer need to checkall the edges -ifanedge (u, v) isadded, we only need
to check the purecore of v and v, so the following edge insertions are faster. The only exception is
the AS_1999 network, where the runtime increases constantly. This is because there are a large
number of nodes with large purecores, so subsequent checks still take a significant amount of time

for this network.
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4.5 Conclusion

Inthis chapter, we discussed the problem of capturing how the k-core structure of a network changes
due to deleted edges or nodes. To address this we proposed a measure called Core Resilience of a
network, which measures how much the ordering of the nodes by core number is affected when

there are missing edges and nodes.

Computing the core resilience of a large networks is computationally expensive, and so we pro-
posed two node measures based on network structure. The two measures - Core Strength and Core
Influence, can be used together to tell us if a network is likely to have high core resilience or not. We
proposed a method called Maximize Resilience of k-core (MRKC) to add edges to a network with-
out changing the core number of any node, such that the core resilience of the resulting network
is improved. We tested our method against baselines on multiple real-world networks, and found
that it can improve the core resilience against edge deletion by 19% on average, and against node

deletion by 19.7% over the original network.
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Chapter 5

Core Minimization

In Chapter 4, we considered the change to the ordering of nodes based on core number due to
missing edges or nodes. In some applications, the membership of the nodes in some k-core is more
important than the global ordering of nodes. The literature describes the Core Minimization prob-
lem, which asks how likely it is that nodes in the true k-core of a graph are to be in the observed

k-core of that graph if there is missing data. [68, 99, 104].

As an example consider the toy graph shown in Figure 5.1. Here all the nodes belong to the 3-core;

but if the red node (or rather, any node) is deleted, they are no longer in the 3-core.

There has been various recent works on the problem of core minimization. Zhang e al. [99] pro-

il

%

Figure 5.1: A toy graph showing collapsed k-core. The entire graph is a 3-core; but if the red node is
deleted, all the rest of the nodes are no longer in the 3-core.
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posed a method of finding ‘critical users’ - that is the nodes that when deleted reduces the size of
the k-core the most. They proposed a greedy algorithm to find such critical users. Medya et al. [68]

showed that solving the core minimization problem is NP-hard.

In contrast to these earlier works, our goal is not to find the set of nodes that minimizes the k-core
by the most - but rather to characterize the resilience of the k-core of a graph to such minimization

attacks. In this chapter, we try to answer the following questions:
1. How can we characterize the resilience of a k-core to core minimization?

2. Ifwe can anchor some nodes, which nodes should we select to improve the resilience to core

minimization?

Another very closely related problem is the Anchored k-Core problem [14]. In the anchored k-core
problem, one seeks to find a set of nodes to ‘anchor, or retain within the anchored k-core, even if
their degree within the k-core subgraphis lessthan k: other nodes in the anchored k-core must thus
have at least k connections either to other nodes in the subgraph or to the anchors. The objective
of the anchored k-core problem is to maximize the size of the resulting anchored k-core [15], in

hopes of preventing a cascading exodus. We will describe this in Chapter 6.

5.1 Motivating Application

Because the k-core of a graph gives us the ‘central’ nodes in the graph, there are various applica-
tions that depends on the membership of the nodes in the k-core. Here, we describe a few exam-

ples.

Example 1: k-corein the WWW has been used to identify web-spam. In [57], the authors found that
the spam nodes are grouped together with other spam nodes in a connected component of the

k-core. They proposed a method to identify the spam nodes using this information.
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Ifthe resilience of the k-core to core minimization is low, the spam nodes can delete some nodes/edges
to better hide the other spam nodes. So, itisimportant to understand the resilience of k-core to core

minimization.

Example 2: A financial network is one where the nodes are publicly traded companies and they
are connected by an edge if the similarity in their trading pattern determines if two nodes are con-
nected [65]. In [22], the authors studied the robustness of such financial networks. They found that
the size of the k-core (for a high value of k) is a good indicator of the robustness of the financial
system. They found that if the distribution of the nodes in the different k-shells follows a U-shape -
more nodes in very high and very low k-shells and very few nodes in the intermediate, the financial

network is more robust against external shocks.

An attacker (with enough capability) can manipulate edges in such network by manipulating the
trading behavior of some companies. If the goal of the attacker is to reduce the robustness of the
system they can manipulate the edges with the object of minimizing the size of the k-core (for high
k) so that most of the nodes falls to intermediate shells. So, it is important to understand not only
how robust the financial system is to external shocks, but also the core minimization attacks. If the
resilience to core minimization attack is low, it is also important to identify which are the compa-
nies that needs to be kept alive (i.e. anchored) so that as to improve the resilience to such core

minimization attacks.

5.2 Characterizing the Resilience to Collapsed k-Core

In the case of core resilience (Chapter 4), we are interested in measuring how resilient multiple k-
cores are. So, the ordering between the different cores matters — which led to us defining it based
on rank correlation. In this case we are interested in just a single k-core — we do not care if the nodes
changes coreness as long as they are still in the k-core. For example, if we are interested in the 5-

core, it does not matter if the coreness of a node changes from 10 to 9. All that we care is that the
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node still remains in the 5-core.

Although the literature on collapse k-core generally talks about node deletion, we will also focus
on edge deletion in this chapter as that simplifies the analysis. As described in Appendix A.1, node

deletion can be considered as another side of edge deletion.

Let Gk = (Vk, Ex), be the k-core of a graph and let G be the set of graphs after removing p% of the

nodes. We define the Collapse Resilience of the k-core of G as,

Y ogreg {V € Vi i ke (v) > k}’

Rl6r) = G- Vi

(5.)

That is, the collapse resilience of the k-core is the expected fraction of nodes that remains in the k-
core over all the possible subgraphs that results due to p% of edge removal. If we are interested in

the average fraction of collapsed nodes, 1 — R( Gx) give us that value.

In practice, it is not possible to find G. So we approximate it through sampling. However even the
sampling method might not be computationally efficient enough for some cases, so we propose

the concept of Core Instability.

5.2.1  Core Instability

Motivated by the idea of core strength (Section 4.3.2), we propose the the idea of Core Instability of
the k-core which is a measure of what fraction of nodes in the k-core are likely to drop out of the

k-core due to an edge deletion. We expect k-cores with high core instablity to collapse more easily.

We begin by measuring how many neighbors of a node uin G needs to drop out of the k-core for

u to also drop out. We call this the Relative Core Strength of u with respect to the k-core, and it is
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Figure 5.2: An example of a core unstable subgraph. The number inside the nodes are the relative core
strength of the nodes. Notice that if any edge that has a node with relative core strength of 1 as one
endpoint is deleted, the entire structure collapses, and none of the nodes in the subgraph are in the
k-core.

given by,

rCS(u, G, k) =|{verlg(u):rs(v) >k} —k+1. (5.2)

Then, we define a Core Unstable Subgraph in the k-core as the maximal connected subgraph of the

k-core such that:
1. All nodes in the subgraph with relative core strength of 1 are connected.

2. All nodes in the subgraph with relative core strength greater than 1 are connected to as many

nodes with lower relative core strength as its relative core strength.

The idea behind the core unstable subgraph is that, if any edge that has a node with relative core
strength of 1 loses an edge, the entire subgraph drops core number (Theorem 5.2). As an example,
consider Figure 5.2. Here the numbers inside the nodes are their relative core strengths. We can
observe that if any edge that has a node with relative core strength of 1 as one endpoint is deleted,
the entire subgraph collapsed out of the k-core. So, the idea of the core unstable subgraph allows

us to quantify how close the k-core as a whole is to collapse.

Let Gk = (Vk, Ex), be the k-core, and let G' = (V’, E’) be a core unstable subgraph. Assume

r(G’) be the number of edges that has one a node of relative core strength of 1 as one endpoint.
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That is,

r(G")=NH(u,v) € Ex:ue V' ANrCS(u, G, k) =1}]. (5.3)

If we are dealing with one edge deletion, then the probability of deleting one of these edges is r|(Ei/|).

If an edge is deleted, the fraction of nodes (out of all nodes in the k-core) that drops out of the k-

V']

Vi So, we can define the core instability of a k-core, as the expected fraction of nodes that

coreis
drops out of the k-core due to an edge deletion. Formally the core instability of the k-core of the
graph G is given by,

r(6) V|
Bl Vil

CT(G.k)=>

G'el
where U is the set of all core unstable subgraphs in the k-core.

Finding all the core unstable subgraphs in the k-core is straight forward - simply start with all con-
nected components of nodes with relative core strength 1; then incrementally add nodes of higher
relative core strength that satisfies the conditions. Algorithm 3 describes this process in more de-

tails.

Algorithm 3 The algorithm to find the core unstable subgraph.
1. function FINDCOREUNSTABLE(Gy)
2: r < RelativeCoreStrength(Gy)
3 C <« Connected components in the subgraph induced by {u € V' : r[u] = 1}

4: Fmax — Max r{u]
ue Vi

5 forS € Cdo

6: fork € [2,3, ..., rmax] do

T: T+ {uelg(S): rluy=kA|lg(u)ynS| >k}
8.

9

Update S with T
end for
10: end for
1 return C
12: end function

Theorem 5.1 (Complexity of Algorithm 3). The running time of Algorithm 3is O(| Vk|), and the space
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complexity is O(| E|).

Proof. If we group together nodes by their their relative core strength, at each step, we only need to
check for nodes from within a group. So, over the entire process of building up one core unstable
subgraph, we would have checked each group once. The running time of the algorithm is then,

O(|C|| Vk]). Since | C| < | V|, we can write it as O(| Vi]).
At the most, the space required to store C is approximately equal to that of V. So, the space com-
plexity of Algorithm 3 is O(| Vi]). O

Theorem 5.2. for G’ € U, ifanedge (u, x), suchthat rCS(u, G, k) = 1, is deleted from G’, all the

nodes in G’ drops out of the k-core.

Proof. By construction we can see that all the nodes with relative core strength of 1 will drop out of

the k-core.
As a result, the nodes with relative core strength of 2 will also drop out of the k-core.

Through the same argument, all the nodes in the core unstable graph will drop out of the k-core.

O

5.2.2 Experiments

To test if the size of collapse in the k-core with higher core instability is larger than those with lower
instability, we perform experiments on real-world networks. We consider three cases: (1) random

edge deletion, (2) random node deletion, and (3) greedy node deletion [99].

Intherandom edge deletion, an edge that connects two nodein the k-coreisrandomly deleted. The
random node deletion is similar except we delete nodes. In the greedy node deletion, the node that
minimizes the size of the k-core the most if deleted is deleted at each step. In all these cases after

each deletion the nodes that are in the k-core is updated. For greedy node deletion, we consider
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Figure 5.3: Fraction of nodes that collapsed due to random edge (fig. 5.3a), random node (Figure 5.3b)
and greedy node [99] (Figure 5.3c) against the Core Instability for various real-world graphs (denoted
by the dots). Here, the number of nodes or edges deleted is 20 (5 for greedy node deletion), and we con-
sider the 10-core. We can observe that in networks with higher core instability, the collapse is higher.

only small graphs because the algorithm scales very poorly with the number of nodes.

Figure 5.3 shows the fraction of nodes that drops out of the 10-core against the core instability
due to random edge deletion (Figure 5.3a), random node deletion (Figure 5.3b), and greedy node
deletion (Figure 5.3¢). In these figures, the dots represents different networks from various domains
ranging from social networks to biological networks. The number of edges/nodes deleted for the
random case is 20 and it is 5 for the greedy algorithm (because greedy algorithm is very slow). We
consider the 10-core in all the cases. Because the greedy algorithm scales very poorly with the
network size, we consider only small networks for Figure 5.3c. The values of fraction collapsed given

are the average values of 30 trials.

We can see that in networks with higher core instability, a larger fraction of nodes drops out of the
k-core in all the cases. This indicates that the core instability gives us a measure of the collapse

resilience of a graph - graphs with higher core instability have lower collapse resilience.
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5.3 Anchoring Nodes to Minimize Collapse

In this section we discuss ways to minimize the collapse of the k-core due to node or edge deletion.
Todo thiswe referto theidea of ‘anchored k-core’ [14]. The anchored k-core of a graph G = (V/, E),
is defined as the subgraph such that all the nodes in the subgraph have at least k neighbors within
the subgraph or aset A C V. The set of nodes A is called the set of ‘anchor’ nodes. Through

appropriate selection of these anchor nodes, we seek to minimize the collapse.

As an example, in the context of a social network, we can think of the anchor nodes as those users
who are given incentives to remain in the network. Of course, we are limited with the number of
anchor nodes we can select - we will call this the anchor budget. This is related to the anchored

k-core problem [98, 54], and we will discuss this in the next chapter.

Let #(u, G, A) be the core number of node u in graph G anchored with set of nodes A C V.
Then, the collapse resilience in the presence of the anchors A is given by simply replacing () in

Equation (5.1) to #(x). That is,

ZGIEG |{V E Vk . %(V, G/,A) Z k}|

R(Gi, A) = 55
If bis the number of anchors allowed, the goal is to find A* such that,
A* = arg max R(Gy, A). (5.6)

AC[Vk]b

5.3.1  Shortcoming of Naive Method

If we have a method of selecting nodes to remove to minimize the size of the k-core, a naive method
of selecting anchor nodes might to be simply anchor the solutions from the method - preventing

them from deletion or dropping out of the k-core. However, as we will show that does not always
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Figure 5.4: Toy example demonstrating the shortcomings of the naive method of anchor selection in
increasing the collapse resilience. In the naive method, either node A or B will be selected as anchors.

However, we can see that even after anchoring node A or B, any edge deletion collapses the entire
3-core.

give good anchor nodes.

The k-core minimization technique we will use here is the greedy algorithm CKC proposed in [99].
Basically, the idea is to greedily select the node whose deletion results in the largest decrease in
the size of the k-core. In the naive adaptation of this method, instead of deletion, these nodes are

anchored.

Consider the graph shown in Figure 5.4, where all the nodes are in the 3-core. Suppose that we are
dealing with one node deletion, and one anchor selection. The naive method will select node A or
B because deletion of either of these nodes results in the largest number of nodes dropping out of
the 3-core (and they have the highest degree). Suppose that node A is anchored. In that case the
greedy node deletion algorithm will delete node B - resulting in the entire 3-core collapsing (except

the anchor node). If we anchored node C or D, only half of the nodes in the 3-core will collapse.

This example demonstrates that the naive method of anchor selection does not work because all

that the naive method does is to remove one solution from the CKC algorithm.

5.3.2 Maximizing the Collapse Resilience of the k-Core

The idea of core unstable subgraphs motivates our algorithm for anchor selection. The core unsta-

ble subgraph is defined as the maximal connected subgraph of the k-core such that all the nodes
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in the subgraph with relative core strength of 1 are connected, and all the nodes other nodes in
the subgraph are connected to as many nodes wit lower relative core strength as its relative core

number5.2.1.

We know thatin a core unstable subgraph if an edge with one endpoint at a node with relative core
strength of 1 is deleted, the entire subgraph drops out of the k-core (Theorem 5.2). By definition
the anchor nodes cannot drop out of the k-core. So, the anchor nodes should not be considered
as part of the core unstable subgraph. Thus, in the presence of anchor nodes, we redefine the core
unstable graphs to exclude the anchor nodes. As a consequence, edges adjacent to an anchor node

can also not be candidates for removal. That is Equation (5.3) has to be updated as,

F(G)=H(uv)eEc:ue V'\AANVEZAANTICS(u, G, k) =1} (5.7)

So, given a core unstable subgraph, G’, the anchor nodes can serves two functions: (1) minimize

|V

, the size of the core unstable subgarph, and/or (2) minimize r(G"), the number of edges with
an endpoint a node in V'’ with relative core strength of 1. This is the intuition behind our anchor

selection algorithm, which we call Core Instability Minimization (CIM).

Consider a core unstable subgraph G’ = (V’, E’) of the k-core Gy, and let r( G’) be the number of
edges with an endpoint in a node in V'’ with relative core strength of 1. If a node u is anchored, let

d(u, G', A) be the relative size of the resulting core unstable subgraph. That is,

v/ : /
ifug VvV
5([,[' G/) — |Vk|

{veV":irCS(v.G)IN(v,G)\{u}|}]

Vi1 otherwise

Let v(u, G") be the relative number edges whose deletion leads to the collapse of G’ (excluding
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the ones with endpoint at u). Then,

_ H(x,y) € Ex: xe V'\{u} ANrCS(x,G")=1Ay & AU{u}}|

u, G' 59
Ve ) € B ix.y AU >
where A'is the set of anchor nodes already selected.
Then, foreach node u € V/, the drop in core instability due to u is then given by,
> <M — y(u, G"é(u, G’)> . (5.10)
&\ LBl Vi
If we set,
a(u) = Z v(u, G") - d6(u, G"), (5.11)
G'eu

at each step we select the node with the lowest a(x) and anchor it. The process is repeated until
the required number of anchors are selected. Algorithm 4 gives the CIM algorithm in more details.
Note that FindCoreUnstableAnchored () is similar to Algorithm 4, except that we take into con-
sideration anchor nodes.

Theorem 5.3 (Complexity of Algorithm 4). The time complexity of Algorithm 4 is O(b| Vi|); and the

space complexity is O(| Vk||).

Proof. Finding the core unstable subgraphs can be done in O(|V4|). For each core unstable sub-
graph, we need to update the scores for at most | V| nodes. So, to find one anchor, the running
time is O(| V| + [U]||Vk|) = O(|Vk|), since [U| < |Vk]|. So, the running time of CIM to find b
anchorsis O(b| Vi|).

The space required during FindCoreUnstableAnchored is O(|Vj|). No additional space is re-

quired during the other steps. So, the space complexity is O(| Vk||). O

Example: To demonstrate CIM with a working example, let us consider the toy example we con-
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Algorithm 4 The algorithm for Core Instability Maximization (CIM).
1. function CIM(G)

2: A0
3 while |A] < bdo
4 a:V—=20
5: U + FindCoreUnstableAnchored(Gy, A)
6: for G’ e U do
7 foru e V' do
8 a(u) « a(u) +~v(u, G") - 6(u, G")
9: end for
10: foruelg (V')\ V' do
m: a(u) < a(u) +~(u, G") - |V
12: end for
13: end for
14: u « argmin a(u)
ve Vi
15: A<+ Au{u}
16: end while
7 return A

18: end function

O—O——CO—@——0@—(
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Figure 5.5: Toy example demonstrating the shortcomings of the naive method of anchor selection in
increasing the collapse resilience.

sidered in Section 5.3.1 shown in Figure 5.5 again. We are considering only one anchor and node
deletion in this example. As demonstrated earlier, removal of node 5 results in the entire 3-core

collapsing.

In this example, the entire graph is one core unstable subgraph. So, the core instability 1 - that is,

whatever edge we delete, the entire 3-core will collapse.

The a(x) for all the nodes are given in Table 5.1. We can see that nodes 7 and 10 have the lowest

a(x) scores. If either of them are selected as anchor, the expected fractions of nodes that collapse
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Nodes | 1 2 3 4 5 6 7 8 9 10 1M 12 13 14 15 16 18
a(x) {10 1.0 10 1.0 1.0 1.0 05 1.0 1.0 05 10 1.0 1.0 1.0 1.0 1.0 10

Table 5.1: Values of a(x) for the toy example.

is reduced from 1 to 0.49. This is clearly much better than the naive method.

5.3.3 Experiments

To evaluate the effectiveness of CIM, we perform experiments on multiple real-world graphs. We
consider random edge removal, random node removal and greedy node removal. Because the

greedy node removal is slow for larger graphs, we consider only small graphs.

We perform two types of experiments: (1) performance comparison of CIM for different numbers of

anchor nodes, and (2) performance comparison between CIM and baseline algorithms.

Experiment 1: For the first experiment, we use only CIM as the anchor selection algorithm. We vary
the number of anchors from 0 to 25 in steps of 5. For all the experiments we consider only the
10-core. The datasets we use are bio-dmela, bio-celegans and unf-usair, and these datasets are all
publicly available. We selected these datasets because the greedy node removal algorithm is slow

on larger graphs.

Figure 5.6 shows the fraction of collapsed nodes against the number of removed edges/nodes for
various number of anchor nodes. We can see that in all the cases, increasing the number of anchors
reduces the fraction of collapsed nodes. In the cases of bio-celegans and inf-usair graphs, adding
25 anchors reduces the collapsed nodes by more than half. Note that the anchored nodes are not
counted in calculating the fraction of collapsed nodes (either as not collapsed or as being in the

k-core).

Theresultsforthe greedy node removalin the case of bio-dmela and bio-celegansis very interesting.

We can observe that with just 5 nodes removal, the entire 10-core collapses. However, by anchoring
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Figure 5.6: Fraction of nodes that collapsed from the 10-core against the edges/nodes removed for
different number of anchors selected through CIM. The different lines represents different amount of
anchor nodes. It can be observed that in all the cases, selecting more anchors results is lower fraction
of collapsed nodes.

52



nodes selected by CIM the number of nodes whose removal required for the collapse increases to

15 and 20 respectively.

Experiment 2: For the second experiment, we compare CIM against other baselines in reducing
the collapse. We consider three baseline algorithms: Random (anchors selected randomly from
Vi), Degree (nodes in V) with highest degree selected as anchors), and Naive (described in Sec-
tion 5.3.1). We consider 25 anchor nodes for this experiment, and consider the same three types of

collapse as before: random edge deletion, random node deletion and greedy node deletion.

Figure 5.7 shows the comparison of CIM against various baseline algorithms. In all the cases, CIM
results in smaller collapse against all three - random edge deletion, random node deletion and

greedy node deletion.

Among the baselines, the performance of the different algorithms varies wildly. In bio-dmela, ran-
dom performs better than the other baselines for the random deletions - but degree outperforms
it in the greedy node removal. Generally greedy seems to work reasonably well among the base-
lines. Of particular interest is the performance of the naive anchor selection based on the greedy

algorithm. In most of the cases, it performs the worst.

These results (Experiments 1 & 2) show the effectiveness of CIM in preventing/minimizing the col-

lapse of the k-core.

5.4 Conclusion

In this chapter we discussed the resilience of a single k-core to collapse - that is if we are interested
notin the global k-core structure, but only care about how many nodes in the k-core remain when
there is missing data. To this end, we proposed a measure called Core Instability that can tells us
how likely a cascading collapse s likely to happenin a graph. We then use show experimentally that

this measures works in real-world graphs.
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Figure 5.7: Fraction of nodes that collapsed from the 10-core against the edges/nodes removed for
different anchor selection algorithms. The different lines represents different anchor selection algo-
rithms. It can be observed that in all the cases, CIM outperforms all the other algorithms. In bio-
celegans network, anchors selected based on Degree performs as well as CIM. In all these experi-
ments the number of anchors is 25.
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Motivated by this measure, we then consider the problem of anchoring nodes to minimize that
cascading collapse - both to randomly missing data and more targeted attacks. We propose an
algorithm called Core Instability Maximization to select the anchors, and we show that it minimizes

the collapse in real-world graphs.

In the next chapter, we consider a related problem called the anchored k-core problem. If we want
to maximize the size of the anchored k-core by anchoring a fixed number of nodes, which ones

should we select?
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Chapter 6

Graph Unraveling

In Chapter 5, we discussed theresilience of a k-core to cascading collapse. We presented a measure
to quantify how close a graphis to such collapse and proposed a method of selecting anchor nodes

to minimize the cascade. In this chapter, we consider the anchored k-core problem [14,15].

The participation of a person in social networking platforms is often motivated by the participation
of others [60]. People take part in such platforms in order to engage with others; and in return, they
produce content that appeals to others. In other words, people’s incentives for participation on a
platform depend partially on the number of people to whom they can reach. When these incentives
are low, people may leave the platform. This decreased participation may affect the participation of
others, further decreasing the incentives for participation. Considering the social-networking plat-
form as a complex network among people, locally decreased participation may cause a cascading
exodus from the platform. Finding (and incentivizing) the critical individuals whose active partici-

pation are key to the larger participation in the network is an essential problem.

As an example consider the example graph shown in Figure 6.1. Here the green nodes have a core
number of 3, the blue ones have a core number of 2 and the red node has a core number of 1.
Suppose a user stay on the platform if at least 3 friends are also on the platform. Then, the red
node will leave as it has only one friend - this in turn causes the number of friends of the blue node

to drop to 2 and they will also leave. At the end only the green nodes will remain active on the
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A

Figure 6.1: An anchored k-core example. The green nodes form a 3-core. If the red node is anchored,
the entire graph becomes an anchored 3-core.

network. This cascading exodus of nodes/users was first described by [14] as the graph unraveling

problem. We present more motivating applications inSection 6.1.

One way to prevent this graph unraveling is to anchor some nodes - that is give some incentives to
some nodes to remain active on the platform. These nodes are referred as the anchored nodes. In
the anchored k-core problem [14], one seeks to find a set of nodes to ‘anchor, or retain within the
anchored k-core, even if their degree within the k-core subgraph is less than k: other nodes in the
anchored k-core must thus have at least k connections either to other nodes in the subgraph or to
the anchors. The objective of the anchored k-core problem is to maximize the size of the resulting
anchored k-core [15], in hopes of preventing a cascading exodus. In the literature, the nodes (exclud-
ing the anchors) that are in the anchored k-core but not in the original k-core are called followers.
Given a fixed number of anchors, finding the optimal sets of anchors to maximize the size of the

k-core is known to be NP-hard for k > 2 [14].

If we take a look at the example graph in Figure 6.1 again, we can see that if the red node is anchored,

the rest of the nodes become a part of the anchored 3-core - thus preventing the graph unraveling.

The algorithmic challenge behind the anchored k-core problem lies in the ability to foresee cumu-
lative effect of groups of anchor nodes, not just individual nodes. It is possible that the addition of
the first few anchor nodes make no difference, but the addition of one more anchor makes a drastic
difference. A good algorithm should be able to foresee the big future pay-off even when the imme-
diate benefits are small. This ability to foresee future benefits becomes essential especially when

the budget for anchored nodes is large.
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We propose Residual Core Maximization (RCM), a novel algorithm for the anchored k-core
problem. RCM selects anchors based on two measures — Anchor Score and Residual Degree. If the
number of anchors needed to convert a connected component is more than the anchor budget
available, the anchors are selected based on the anchor score. Otherwise, the anchor selection
depends on the residual degree, and RCM selects the candidate anchors with the highest anchor

Scores.

6.1 Motivating Example

Example 1: Consider an online social friendship network (e.g., Facebook). It has been shown that
users remains on such networks the activity of their friends [60] - if they have enough friends active
on the social network, they are also likely to remain active. If we assume that a user remains active
if at least k friends are also active in the social network, the k-core forms the sub-graph of the users
who are active on the network. Therefore, it of interest to the owner to the operator of the social

network to maximize the size of the k-core in such network.

Example 2: In many online multiplayer games, users need to group up to attempt the high level
quests. If k is the number of people required to attempt these quests, the users who already have at
least k active friends have a better experience because they can invite these friends to these quests.
On, the other hand those who less than k active friends have to use the ‘looking for group’ feature
and are grouped with random people. That is the players who are in the k-core of the friendship
network have a better experience and are likely to stay active. Therefore, it is of interest to maximize

the size of the k-core in this friendship network.

In these examples, the people/users/players who are provided an incentive to remain active are the

anchors, and the people who are in the anchored k-core as a result are the followers.
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6.2 Anchored k-Core Problem

The anchored k-core problem was introduced by Bhawalkar et al. in 2012 [14]. The problem was
inspired by the observation that a user in a social network is motivated to stay only if her neighbor-
hood meets some minimal level of engagement: in k-core terms, she will stay if k friends are also in
the network. Bhawalkar et al. defined the anchored k-core as the subgraph that is computed using
the usual k-core decomposition algorithm, but with the modification that selected ‘anchor’ nodes
are not deleted during the process. These anchored nodes may represent, for example, nodes that
are recruited to remain active in the network, even if their friends are inactive. The anchored k-core
problem, then, is the problem of selecting a specified number b anchor nodes such that the num-
ber of nodes in the anchored k-core is maximized. Bhawalkar et al. showed that for a general graph
the anchored k-core problem is solvable in polynomial time for k < 2, butis NP-hard for k > 2 [15].
They also showed that the problem is W[2]-hard with respect to the number of anchors and Chitnis
et al. showed that the problem is W[1]-hard with respect to the number of nodes in the anchored

k-core [26].

Zhangetal. proposed a greedy algorithm, called OLAK, for the anchored k-core problem [98]. OLAK
operates over by, iterations, where b,y is the allowable number of anchor nodes. In each iter-
ation, a node that is not in the anchored k-core but which would generate the largest number of
followers if anchored is selected as the next anchor. Because only a single anchor node at a time is
considered, and only nodes from the (k — 1)-shell can become followers when anchoring a single

node, OLAK considers only follower nodes from the anchored (k — 1)-shell during each iteration.

6.3 Problem Definition

Considera graph G = (V/, E), and let N(u) denote the set of neighbors of u € V in G. We use Gy
to refer to the subgraph induced by Vi = V/ \ V..
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Notation Description

A The set of nodes that are anchored.

b The anchor budget.

Via The nodes in the anchored k-core with anchors A.
Via The nodes in V, but notin Vj a.

F(A) The nodes in the anchored k-core, but not in k-core.
N(u) The neighbors of node v in the graph G.

G, The set of candidate anchors.

Cr The set of candidate followers.

0 (u,A)  Residual degree of node u with anchors A.

Table 6.1: Notations used in this chapter.

Consider A C V. The anchored k-core of G with anchors A is the maximal subgraph Gy a =

(Vi.a, Ex.a) such thatVu € Vi 4 one of the following holds:
(1) wisananchornode,ie., u € A,

(2) wuhasat least k neighborsin Vi a,i.e.,

N(u) N Vi al > k.

The anchored k-core of a graph can be computed like the usual k-core - but with the nodes in
A kept in the graph even if their degree is below k. In many applications, there is a bound on the
number of anchor nodes. We denote this anchor budget by b. The ‘followers’ are the non-anchor
nodes that are not in the k-core but are in the anchored k-core, and are denoted by F (G, k, A),

where

F(G k,A) = Via\ (VKUA).

For brevity, we will use F (A) when the G and k are clear from the context.

The anchored k-core problem was introduced in [15] as follows: If we are given an anchor budget

of b, which nodes should be anchored so that the number of followers is maximized? Formally, the
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objective is to find the set A* such that

A* = argmax | F (k, A) |
aclv)’

where [V ]” = {X C V; : |X| = b},

6.4 Need for Look-Ahead Ability

Before the current work, the previous state-of-the-art algorithm for the anchored k-core problemis
OLAK, a purely greedy algorithm that, in each iteration, anchors the node that would add the most
followers [98]. This method has been demonstrated to work well on many real-world networks.
However, it suffers from certain limitations. Zhang et al. showed that with such a selection proce-
dure, the considered followers can only come from the (anchored) (k — 1)-shell (that is, the nodes
in the (k — 1)-core, but not in the k-core). Most importantly, as we show in Section 6.5.1, the set
of all candidate followers is Cr C Vi 4. Combining these two results, the candidate followers in a

greedy method is,

Cr = (Vic1a \ Vika,a) N Cr.

This means that there are two conditions for this type of purely greedy method to succeed:

1. Ifratio f, = :%: is large, then most of the followers comes from the (k — 1)-shell. The greedy

anchor selection algorithm will work well in this case.

2. Evenif f is low, if the anchor budget is low enough that the maximum number of follower

possible is close to or less than | C}

, purely greedy methods will work well.

The upper bound on the coreness of a node is its degree, and in most real-world networks the

degreedistribution follows a power-law distribution. So, the ratio f, decreases rapidly as k increases
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Figure 6.2: Relation between fy and k [ kmax for different networks. fy is the ratio of candidate followers
that are in the (k — 1)-shell to the total candidate followers. Note that the ratio decreases rapidly as
k increases, indicating that a greedy approach that focuses on (k — 1)-shells may not perform well.
Here, LB and SCare different networks (described in Table 2?).

\\4\ \4. 4I- ’5//5//

~ N , -

Figure 6.3: In this example, we seek to maximize the size of the anchored 6-core. The red nodes are
the candidate anchors, the green nodes are in 4-shell and blue nodes are in 5-shell. The edges be-
tween the 6-core and the rest of the nodes are shown with dashed lines and the number represents
the number of edges.

in most real-world networks. As an example, Figure 6.2 shows the value of f, against %~ for two

kmax
real-world networks — LB and SC. (These networks are described in more detail in Table 22.). The
value of fx drops very quickly - indicating that such algorithms will not be able to convert a huge

fraction of the potential follower into actual followers, for most values of k.

To demonstrate the shortcoming with an example, consider the example in Figure 6.3. In this ex-
ample, we seek to maximize the size of the anchored 6-core by anchoring 2 nodes. The red nodes
are the candidate anchors, the green nodes are in the 4-shell, and the blue nodes are in the 5-shell.
Forvisual clarity, the edges between the 6-core and the rest of the nodes are represented by dotted

lines, and the number represents the number of edges. It is clear that a greedy approach will select
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nodes c and d as anchors, resulting in 2 new followers. However, had aand b been anchored, there

would have been 3 new followers.

6.5 Method: Residual Core Maximization

In this section we will describe the components that makes up Residual Core Maximization (RCM)

and how they combine together to select the anchor nodes.

6.5.1 Candidate Followers and Anchors

We begin by deriving the necessary conditions for a node to be a candidate follower from the defi-

nition of k-core, and then use that to find the candidate anchors.

Consider the adjacency matrix M of G a, the subgraph of G left after removing the anchored k-
core subgraph with anchors A. Assume that additional anchors A" C V/ 4 are introduced, where
Vi ais the set of nodes in Gk a. Let § be an element-wise function over x such that v (x,) = 1if

x, > 0and 0 otherwise.

Let c, a, s be vectors of length | Vi 4 such that:

C, = |N(V) N Vk,A|-

(

k ifveA
a, = |
0 otherwise
;
1ifve FIAUA)\ F(A)
s, =
KO otherwise
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Then, by the definition of anchored k-core,

s=7(Ms+a+c—kl)=y(Ms+a—r). (6.1)

From equation 6.1, it is easy to see that foranode v ¢ A’ if [IN(v)| < k, itis not possible to have

s, = 1. So, the candidate followers are given by,

Cr = {V € Vk,A : |N(V)| > k}

Now consider a node v selected as an anchor. If N(v) N Cr = 0, it is not possible for v to bring in

new followers. So the set of candidate anchors is,

C, = {V c Vk,A : ’N(V) N Cfl > O}

We can, therefore, discard any nodes notin Cr U C,, from the following analysis.
Theorem 6.1. Nodes that are notin C¢ cannot become followers. Thatis, Vv € (Vk,A \ C,c) LPA C

Vicasuchthatv € F(k,AUA).

Proof. Since,v ¢ C¢, [N(v)| < k. If v € F(k, AUA"), by definition [N(v) N Vi avar| > k =
IN(v)| > k. Thisis a contradiction. So, v ¢ F (k, AU A). O

Theorem 6.2. Adding any subsetof Vi, a\ C, to the set of anchors will not change the set of followers.

Thatis, YA' C (Via\ C.) . F (k, A) = F (k, AU A).

Proof. Consider A’ C (Vk,A\ Ca). Itis easy to show that F (k, A) C F (k, AUA). So,

F(k, A\ F(k, AUA) = 0. (6.2)
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let D = F(k,AUA) \ F(k,A). By Theorem 6.1, D C C¢ C Vj a. Then by the definition of

anchored k-core,Vv € D,

IN(v) N Vi auar| > k
IN(v) N (VkaUA UD)| > k

IN(Vv) N (VkaUD)|+ |N(v) N A'| > k.

Because A'N C, = 0, Bu € A’ suchthatu € N(v) (by definition of C,). So,

N(v)NA'| =0.Then,

IN(v) N (ViaU D)| > k.

This means that Vi 4 U D is the set of nodes in the anchored k-core with anchors A, because by
definition, the anchored k-core is the maximal set. So all the nodes that are in the anchored k-core

with anchors AU A’ are already in the set V 4. Then, D = ().

F (k. AUA)\ F (k. A) =D =10. (6.3)

Therefore, from (6.2) and (6.3), we get F (k, A) = F (k, AUA’). O]

6.5.2 Residual Degree

In equation 6.1, for v¢ € C, if there are r, additional neighbors in A" U F (AU A’) due to the
anchors, v will also become a new follower. Intuitively, r, tells us how ‘far’ v € Cisfrom becoming
a follower - nodes with lower value can be converted to new followers more easily. In the rest of the
discussion we refer to this value as the Residual Degree and denote it with § (v|A) = k — |[N(v) N

Vi al-
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6.5.3 Residual Core

When nodes A’ C C, are added to A as anchors, which nodes in Cr become followers? To answer
this we define the Residual Core subgraph. The residual core subgraph (with respect to the new
anchors A’) is defined as the maximal subgraph such that every node in the subgraph has at least
as many neighbors in the subgraph or A’ as its residual degree. We denote the residual core of A’

with R,

R gives us all the new followers due to A’ (Theorem 6.3), and it can be found efficiently as de-

scribed in Algorithm 5.

Algorithm 5 The algorithm to find residual core.
1. function FINDRESIDUALCORE(G, Cr, A')
2: Gr < Subgraph of G induced by C¢
3: G < Connected components in G
4 G+ {SegG:3FveS:NVv)NA #0D)}
5 X < Nodes in all the subgraphsin G
6: while Y # () do
7
8
9

Y« {veX:|INlv)N(XUA)| <)}
X+ X\Y
end while
10: return X
11: end function

Theorem 6.3. F (AUA')\ F (A) = R},

Proof. Let Y = F(AUA')\ F (A).Consider v € Y. Then,

Vk,AUA’ N N(V)| > k and |Vk,A N
N(v)| < k.Weknow that, Vx aua = VkaUA U Y, where Vi 4 and A’U Y are mutually exclusive

by definition. So Vv € Y,

|Vk,AUA’ N N(V)’ Z k
| (Ve aAUA UY)NN(V)| > k

[(AUY)ANWV)) [ =6 (v]A).
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By definition of residual core, we can now see that Y is the residual core with anchors A’.
Therefore, F (AU A) \ F (A) = R} O
Theorem 6.4. Algorithm 5 correctly finds the residual core.

Proof. Let Vs 4 be the correct residual core, and S be the set returned by Algorithm 5.

By construction it is easy to verify that, S C Vyaand S ={v € Vsa: [N(v) N S| < (v, A)}. So,

Se V(;'A.

Since §(v, A) is defined only for v € C¢, Vs 4 C Cr. O

6.5.4 Bounds onthe Number of Anchors

Let Gf be the graph induced from G by the nodes in C¢, and let G be the set of connected compo-
nentsin Gr. If nodesin G’ € G become followers, they cannot effect the residual degree of nodes

in other components. Thus, we consider each component separately.

Thenfor G' € G, let V! bethe setof nodesin G’ that can become follower without relying on nodes
notin G’,and let V! be the set of nodes in G’ that need anchors not in G’ become followers. That

is,

Vi={ve V' IN(v.G) = dv)}
Ve =VIA\ Vi
where V' is the set of nodes in subgraph G’, and N(v, G’) is the set of neighbors of vin G'.

If anchors A are selected such that all the nodes in V!, become followers, G/ become a a residual

core, and converts the remaining nodes, V7 to followers as well (Theorem 6.3).

As an example, consider Figure 6.4. In this example, the G’ is indicated by the rectangle, and the
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Figure 6.4: The nodes inside the box form G', and the number represents their residual degrees. The
red nodes are the nodes in C, \ Cy. The green nodes and blue nodes are V! and V respectively.

numbers inside the nodes are the residual degrees of the nodes. The red nodes are nodes in C,.
We can see that the green nodes have at least §(x) neighbors within G’; but the blue nodes need
anchors from among the red nodes. So, the green and blue nodes form V/ and V, respectively. It

is easy to see that if the blue nodes are converted to followers, the G' becomes a residual core.

By construction, the only neighbors of V! notin G" arein C, \ Ct. It can be seen that each node
v € V! needsd(v) — |N(v, G")| anchors from C, \ Cr to become followers. We denote it by §" (v).
Then consider,

(G = max §'(v)

veV)

BTG =D d(v)

veV)

§(6) = min 8(v)

If we want to convert all nodes in G’ to followers, we need at least 8+ (G’) anchors from C, \ Cr.

So, this gives us the lower bound on the number of anchors required.

Now consider the case where none of the nodes in V. have any common anchor. In this case all
nodes need to be anchored separately. Then, 87 (G’) give us an upper bound on the number of

anchors required.
If the remaining anchor budget s b’, we have:
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1. b > BT (G"). Allthe nodes in C’ can be converted to followers.

2. BH(G') < B < BT (G). In this case, the budget may or may not be enough to convert all

the nodes in C’ to followers.

3. b < Bt (G’). The budget is not enough to convert all the nodes in G’ to followers. But it

might be possible for some nodes to become followers.
4. b' < p*(G’). None of the nodes in G’ can become a follower.

For a given component, depending on these case, we need different anchor selection strategies.

6.5.5 Residual Anchor Selection

If the anchor budget remaining is enough to convert all nodes in G’ to followers, we need to select
the minimum number of anchors needed. Since the nodes in V/ already have enough neighbors in

G',itis enough to consideronly V.

We thus need to select the minimum number of anchors from C, \ Cr such thateachnodev € V/

is connected to at least ¢’(v) anchors.

Formally, we have a mapping ¢’ : V! — Z-, and a bipartite graph G, = (V., C, \ Cr, E.) where

E! is the set of edges between V! and C, \ Cr. The problem is to find the set A’ such that,

5 :{2\ C G\ CriVve V., IN(v, G,)NA| > 5’(v)}

A" =argmin |X|.
Xes

Finding the minimum number of residual anchors is NP-hard and so we propose a heuristic algo-
rithm for this task (Algorithm 6). At each step, the algorithm selects the node from C, \ (Cr U A')

that has the most neighbors in T, and adds it to A". Here T is the set of nodes such that all the
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nodesin T still requires additional anchors to become followers.

Algorithm 6 Algorithm to find the residual anchors of a connected component.

1: function RESIDUALANCHORS

2: A+ ()
T+ V]
while 7 # () do

V< argmax |[N(u)nT|
ue C,\(CrUA")

6: A — Au{v}
T: T+ {ueT:0uG)>|Nu)nAl}
8 end while
return {(A, V')}
10: end function

A e

Theorem 6.5. Residual anchor selection in NP-hard.

Proof. We will show this by reducing the set cover problem to the residual anchor selection prob-
lem. Suppose we have a set cover problem with finite sets U C Z; and S = {Sp, Si, ...} such that

S; C U.. The set cover problemis to find the set S* such that,
S* =argmin |S|

S/'CS

Let us generate the following,

R=1{0,1,..,|S| -1}

E={(,j)):ieUNnie€S}.

Now we can construct a bipartite graph B = (U, R, E). By construct, thereis a one-to-one mapping

between R and S. So, (/,j) € E denotes the membershipofi € Uto S; € S. So, with this this
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construction, the set cover problem can be stated as: find R* such that,

R* = argmin |R’|
RICR

st. | N(r.B)=U.

rer*

If we have ¢’ : U — 1, the problem has reduced to the residual anchor selection, where U and R

correspond to VZ and C, \ Cr. So the residual anchor selection problem in NP-hard. N

Theorem 6.6. Algorithm 6 gives a solution thatis within a factor hyy, of the optimal solution where, hyy;| =
Vol 1
Zi:l T

That is, if the solution found is A" and the optimal is A*, % = hjvy.

Proof. We need to show two things: (1) Algorithm 6 gives a valid Residual Anchor, and (2) the solu-

tion is at most h; times the size of the optimal.
It follows directly form Theorem 6.3, that Algorithm 6 gives a valid Residual Anchor.

Now to prove the second part, we will show that the problem reduces to the set multi-cover prob-

lem.

Consider the set R such thatforallv € G, \ G, the set of neighbors of vin V! isin R.

R={N(v)NnV.:veC\C}.

Then the problem of finding Residual Anchors reduces to finding S C R such thatforall v € V/,

HT eS:ve T} >d(v).

By construction,

S|isequaltothe numberof the Residual Anchors. So, the problem is equivalent to
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finding the set S with minimum cardinality. This is a generalization of the set cover problem called
the set multi-cover problem, and it can be solved by the greedy algorithm with hj-approximation [92],

where,

6.5.6  Anchor Score based Anchors Selection

If the anchor budget is not enough to convert all the nodesin G’ to followers, we want to convert as
many as possible. To quantify the quality of a candidate anchor node with respect to maximizing
the number of followers we propose a node-level measure called the Anchor Score. Denote all the

nodesin G’ by C/, and consider C. such that C; = {v € C,: N(v) N C} # 0}.

Then, we define the Anchor Scoreof v € Cf U C! as

a1y Y a(u) (6.4)

ue CrNN(v) 5(U)

The intuition is that nodes that are connected to others with high anchor score and low residual
degree are important themselves. If nodes with high anchor scores are anchored, this helps in con-

verting its neighbors into followers, which may themselves also be important.

To calculate the anchor scores of all nodes in C; U C., we have | C; U Cl| equations:
qg=1+Dq, (6.5)

where q is the vector of anchor scores, 1 is a vector of 1’s, and D is a matrix such that D; j = 5—(11) if

edge (1, j) exist, otherwise 0.
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Depending on the membership of a node in C., and/or Cf, we have the following conditions:
1. ve Ch\ C.Since C; N N(v) = () by definition, a(v) = 1.
2. v € C; N C. Inthis case, a(v) appears on both sides of equation 6.5.

3. v € C\ C{.Here, v cannotappearontherightof the equation. So, a(v) is simple to calculate

once the other two cases have been calculated.

To compute anchor scores, we first set the score for C; \ CJ to 1. We next restrict computation of
Equation 6.5 to only the nodes in C; N CJ, and calculate the anchor scores. Finally, we calculate

the anchor scores of C! \ Cf using Equation 6.4 and the previously calculated anchor scores.

After calculating the anchor scores, the node with the highest value is selected as the next anchor.

The process repeats as long as there is budget left. Algorithm 7 describes this process.

Algorithm 7 Algorithm to find the anchors based on anchor score.

1. function ASANCHORS
2: A/,F/,S<—®,@,@

3 while |A'| < bdo
4: Calculate the Anchor Scores a(x)
5 v < arg max a(u)
ueClucy
6 R < FindResidualCore (A U {u})
T: A — AUu{v}
8: F' < FUR
9: S+ SU{(A,F)}
10: Remove R and v from C} and C{
: Update ()
12: end while
13: return S

14: end function

6.5.7 Residual Core Maximization

In this section, we put together the pieces of our proposed algorithm Residual Core Maximization

(RCM). The main idea of RCM is to divide the graph into multiple connected components of Cy, and
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then to find anchors for these subgraphs separately depending on BT (G’) (Section 6.5.4). Algo-

rithm 8 describes RCM in detail.

The first step is to generate G, the connected components of the subgraph induced with Cr. RCM
then generates the (anchors, followers) tuples for the components, denoted by S. This step can be
performed in parallel. Next, the problem comes down to finding a set A such that,

:

U S[o]

Sz{SgS:

Ses’
S* =arg max U S[11],
SGS Ses

where S[/] denotes the i-the element in the tuple S. This problem is close to the set union knap-

|S*[11\F|

SOTAl where

sack problem." So, we use a greedy algorithm that selects S* € S that maximizes

A and F are the sets of anchors selected so far and the followers as a result. This is described in

Algorithm 9.

After S* (or the approximation) is computed, RCM selects anchors as,

A= U s[ol.

SeSs*

6.6 Running Time of RCM

In this section we will discuss the running time of RCM. We begin by discussing the running time of

the various components described so far.

Selecting Candidate Anchors: Selection of candidate anchors requires only counting the neigh-

'The set union knapsack problem is a generalization of the knapsack problem in which the weight is calculated
based on union of sets rather than sum of numbers [42]. In our problem, the value is also calculated based on set
unions.
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Algorithm 8 The Residual Core Maximization algorithm.

1. function RESIDUALCOREMAXIMIZATION
2: A, S « @ @

3 Find C,, Cr and calculate 0(x)

4 G < Connected components in G¢

5: for G'inGdo

6: if 3 (G') > bthen

7: continue

8 elseif 5+ (G') > bthen

o: S + S U ASAnchors(G")

10: elseif 3+ (G’) < bthen

1 S + S UResidualAnchors (G’)
12: else

13: S <+ SUResidualAnchors(G’)
14: S +- S U ASAnchors(G’)

15: end if

16: end for

17: A <SolutionSelection(S, b)

18: return A

19: end function

Algorithm 9 The algorithm for solution selection in Residual Core Maximization.

1: function SOLUTIONSELECTION

2: AF <00
3 while |A] < bdo
* SUI\F
4: S argsrensax ﬁ
5: S.remove (S5*)
6: if AU S*[0]| < bthen
7: A<+ AU S*[0]
8: F < FUS*[1]
o: end if
10: end while
1 return A

12: end function
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bors of nodes in Vi 4. So, Cr and C, can be found in O (| Vi 4|).

Residual Degree: To find the residual degree, we need to count neighbors of all the nodes in C.

This can be donein O (| C¢]).

Connected Components: The connected components of Gr can be found in O (| E¢

), where Ef is

the set of edges in Gr.

Bound on Number of Anchors: For a component G’ € G, we first need to find the set of nodes V/
and V/. This requires only counting the number of neighbors of the nodes in G’. So, it can be done
in O (]V']). Then we need to count the neighbors of V! to find 87 (G), 8+ (G') and B* (G’). The
running time of this stepis O (| V|). Then, the overall running time for the component G’ is O (V).

Since we need to find the bounds for all the components, the total running timeis O (| C¢|).

Residual Anchors: In Algorithm 2 (main paper), we need to check foranchorsin (C, \ Ce)NN (V7).
The number of iterations in the algorithm is of the order of |V/| and | (C,\ Cr) N N (V)| <
BT (G’). So, the running time for component G’ is O (7 (G’)|V}]). Assuming that we need to
find the residual anchors for all the components, the running time'is O (3 gcg 87 (G') [VY]) =

O (| G)-

Anchor Score based Anchors: For a component G, to find the Anchor Score of all the nodes in

C;{ U C.. This can be donein O (|Ef,

), where Ef, is the set of anchors in the induced subgraph of
C; U C.. We then need to find the followers of the selected anchor with FindResidualCore ()
and this takes O (|Cf|). Then, if we consider all the components, the time to find b anchors is
O(b-(|Eu| +1Gl) = O(b-|En
CrU G,

), where Eg, is the set of edges in the induced subgraph of

Overall Running Time: By combining the running time of all different parts, we can get the overall
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running time of RCM as,

O (’VkA‘ + |Cf| + |Ef’ + |Cf| + |Efa|) ~ O(|Efa|)

6.7 Experiments

We evaluate the performance of RCM against various baselines both in finding followers and effi-

ciency in doing that. We also compare to the optimal algorithm described by Bhawalkar et al. [14]

fork = 2.

Table B.1lists the real-world networks used in our experiments. These datasets are available at Net-
work Repository? and SNAP.2 We consider social, web, and collaboration networks of various sizes,

ranging from a few thousands to more 1 million edges. We treat all graphs as undirected.

All experiments are performed on a 2.3 GHz 8-core machine with 128GB of RAM that runs Ubuntu
18.04. Algorithms are implemented in Python 3.5.2. Unless otherwise stated, we use only the se-

quential version of RCM in the following discussion and results.

6.71 Comparison Against Baseline Algorithms

We consider three baseline algorithms for finding anchor nodes. The first is OLAK, the current state-
of-the-art algorithm for anchor nodes selection [98]. OLAK greedily selects one anchor node at a
time, and recomputes the anchored k-core decomposition in each step. OLAK has been demon-
strated to work well on a number of real-world networks. For fair running time comparison, we

implement OLAK in Python.

The second baseline is Maximum Degree (MD). This algorithm selects a node from C, that has the

’http://networkrepository.com
Shttps://snap.stanford.edu/data/index.html
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Figure 6.5: Number of followers found by RCM and various baselines (at k fixed at the median value).
In Figure 6.5a, the number of followers against the budget is shown for some selected networks. In
6.5b, the number of followers at b = 250 for all the networks considered is shown. Only RCMand the
best baseline is shown. We can see that RCM selects the anchors that result in the largest number of
followers in all cases. (Higher values are better.)

maximum number of neighbors in Cr as anchor. The third baseline is Random (RND), which selects
anchorsrandomly from Cr. In all baselines, afteran anchor node has been selected, the new anchor

and followers are removed from C, and Cs.

We set k to the median core number of the network (given in Table 2?) and vary the anchor budget

from 50 to 250 in increments of 50.

Figure 6.5a shows the number of followers for varying budgets for some selected networks and Fig-

ure 6.5b shows the followers at b = 250 for RCM and the best baseline on all networks. RCM, shown
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in red, clearly outperforms all the baselines. As expected, the results are closer to OLAK for lower
budgets, but the difference increases for higher budgets. Among the baselines, no single algorithm
is always the best. The results for all baselines are in the supplementary material. We also perform
experiments with b = 100 and various k. The results for this experiment are in the supplementary

material. We observe that RCM outperform the baselines in all the cases considered.

Comparison of Time to find Followers: To compare the runtime efficiency of the various algo-
rithms, we consider the time to find each follower. Figure 6.6a shows the time to to find a follower
against the budget and Figure 6.6b shows the result for RCM and the best baseline?* for all the net-
work at b = 250. In all the cases RCM is much faster than all the baselines. Note that in many algo-
rithms, the average time to find a follower drops as the budget increases because the size of C, and

Cr drops (as nodes become followers and anchors).

6.7.2 Comparison with Optimal Solution

In this section, we compare the performance of RCM against the optimal solution. Bhawalkar et
al. [14] proposed an algorithm for finding the optimal solution for k' < 2. We also include OLAK in

the comparison. For these experiments we consider k = 2 and b = 50.

We also perform experimental comparison for k > 2. In this case, there is no efficient algorithm for
a general graph. So, the optimal algorithm in this case is exhaustive search over C,. Because of this,
we are limited to small budgets and | C,|. For this case we consider the networks FC, FS and FN for

k = 3 and b = 10. We denote the optimal solution by OPT.

Table 6.2 shows the comparison between RCM, OPT and OLAK. In all cases, the number of followers
due to RCM is very close to that found by OPT. The followers due to OLAK are much fewer in all the

networks. Additionally, RCM is around 100 times faster than OPT.

4Results for all the baselines are in the supplementary material.
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Figure 6.6: Average time to find a follower by RCMand baselines. In Figure 6.6a, the the time at different
budgets is given for selected networks, and in Figure 6.6b the time at b = 250 is shown for RCM and
the best baseline. The value of k is given in Table B.1. RCMis much faster than the baselines in all the
cases. (Lower values are better.)

6.7.3 Experimental Analysis of RCM

In this section evaluate the various aspects of RCM - (a) the contribution of AnchorScore() and
ResidualAnchors () to the overall performance, (b) the speedup due to parallelization, and (c)

scalability with network size.

We evaluate the contribution of ResidualAnchors () and ASAnchors () by designing versions of
RCM that use only one of them. We denote these as RCM-RC and RCM-AS respectively. Results are
shown in Figure 6.7a. We observe that results are clearly better when we use both ResidualCore ()

and ASAnchors (). Additionally, RCM-RC outperforms RCM-AS in two out of the three networks.
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Network k b Alg. \Followers Time (ms)

RCM 114 1.2 x 107
KD 2 50 OPT 115 1.9 x 10*
OLAK 97 1.5 x 10*
RCM 150 3.5 x 102
LG 2 50 OPT 152 2.9 x 10%

OLAK 133 9.6 x 103
RCM 160 9.0 x 10?
LB 2 50 OPT 161 4.0 x 103
OLAK 117 2.1 x 103
RCM 180 3.9 x 103

WG 2 50 OPT 186 2.6 x 10°
OLAK 95 6.2 x 10*
RCM 9 1.7 x 101
FC 3 10 OPT 10 3.7 x 10°
OLAK 8 1.6 x 103
RCM 8 4.6 x 10t
FS 3 10 OPT 10 3.7 x 10°
OLAK 5 1.7 x 10*
RCM 10 3.2 x 101
FN 3 10 OPT 10 1.6 x 10*
OLAK 9 7.4 x 103

Table 6.2: Comparison of RCM, OPT and OLAK. Observe that in all the cases, RCM is very close the OPT
while being multiple magnitudes faster.

RCM-AS outperforms RCM-RC in the network FS because |G| = 2 and the budget is not enough

to completely convert any component to followers.

To evaluate the speedup due to parallelization (Section 6.5.7), we limit the number of CPU cores
available and compare the computation time.> Figure 6.7b shows the results of this experiment.
In most networks RCM achieves significant speedup with CPU cores. However, in the case of FS
network there is no speedup. This is because there are only two components - a large one and a

very small one, making parallelization ineffective.

We evaluate the scalability of RCM with network size. As described in Section 6.6 the runtime of RCM
is given by O (|Eg|), where Eg, is the set of edges in the subgraph induced by Cr U C,. Figure 6.7¢

shows the runningtime of RCM against | Eg,| for all the networks in Table 2. As expected, the runtime

5The k value is given in Table B.1and b = 100.
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Figure 6.7: Experimental results for analysis of RCM. Figure 6.7a shows the contribution of different
parts of RCH, Figure 6.7b shows the speedup due to parallel computation, and Figure 6.7¢c shows the
running time against | E|.

is linearin | Eg|.

6.8 Conclusions

We addressed the anchored k-core problem: given an anchor budget, what is the set of anchor
nodes that should be selected to maximize the number of followers? We proposed a method, called
Residual Core Maximization (RCM). Through extensive experimental analysis, we demonstrate that
RCM performs significantly better than the state-of-the-art algorithms. On average, RCM finds 1.65
times the followers found by the best baseline method, while taking being 500 times faster. We also
compared RCM against the optimal solution and observed that the number of followers found by

RCM is very close to the optimal; and the time to find each follower is around 100 times faster.
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Chapter7

Skeletal Core Graph

In the preceding chapters, we studied the resilience of k-cores to various types of changes. The
behavior of a graph to a certain type of change is dictated by various factors - including the num-
ber of ‘extra’ edges and the structure of the graph itself. For example, when we studied the core
resilience Chapter 4, the number of extra edges is captured with core strength, and we found that
it plays an important part in determining how resilient a graph is. Higher core strength generally
translates to higher core resilience. Similarly, when we study the anchored k-core problem Chap-
ter 6, we observed that there are some graphs in which it is easy to select anchors that has a lot of
followers; and in some others the number of followers is very low. We know that extra edges does
play a role here too - the residual degree is a measure of that. With regards to the collapsed k-core
problem Chapter 5, we know that if there are very few nodes with relative core strength of 1, we are
likely to find smaller core unstable graph. Thus, the number of ‘extra’ edges directly have an affect

on the collapse resilience of a graph.

However, we also know that the graphs structure beyond these metrics plays a very important role.
In the core resilience, this is captured with core influence - some nodes are more important than
others based where it is located in the graph. Similarly, in anchored k-core problem, we know that
the connected components in the induced subgraph of the candidate anchors is an important fac-

torin determining if we can find anchors with a ot of followers or not. Lastly, we know that the size
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of the core unstable graph is dependent on the graph structure.

So, to better understand the behavior of different graphs to these changes, it is important to under-
stand purely the effect that structural organization of the different shells has. For example, does a
graph in which there are a lot of connections between the different shells have higher resilience to
core structural changes and why? Answer to such questions can help us in designing better algo-

rithms to improve the resilience or estimate the resilience of a large graph.

So, in this chapter we introduce the idea of Skeletal Core Graph. We can think of the skeletal core
graph of a graph as the minimal graph that has the same k-core structure but without all the extra
edges. We consider two extreme cases of skeletal core graphs based on the connections between
the shells and show how the resilience is affected. Given a graph, we also propose a way to quantify

where its skeletal core lies within these two extreme cases.

We begin by describing the skeletal core graph and properties associated with it in Section 7.1. We
describe the two extreme cases of skeletal core graph - Centralized and Decentralized Core Graphs.
We propose Core Centralized Score which is a measure of where a skeletal core graph falls between
these extreme cases. Then we describe how we describe the skeletal core sub-graph of a graph
(Section 7.1.2, and given a graph, estimate where its skeletal core subgraph is likely to fall between
the centralized and decentralized core graphs. In Section 7.2, relate the core structural change of
a graph to its skeletal core subgraph; and in Section 7.3 we explain how the different structures of
the skeletal core subgraph can help explain some of the observed behavior in the graph unraveling

problem.

Foragraph G = (V, E), we will use the notations described in Table 7.1.
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Notation Description
Gk = (Vk, Ex) The k-shell subgraph.

Eij The edges between the /-shell and the j-shell.
kg(V) The core number of node v in graph G.

K The degeneracy of the graph G.

F6(v) The neighbors of v in graph G.

M (v) The neighbors of vin k(v)-core.

Table 7.1: Notations used in Chapter 7.

7.1 Skeletal Core Graph

We define a skeletal core graph as the graph G7 = (V?, E?) such thatforany G’ = (V/, E’), where
E' C E°, Av € V : kgo(v) # ke(v). Thatis, itis the graph where any edge removal results in
at least one node dropping its core number. Since the since the skeletal core graph does not have
any ‘extra’ edges its behavior regarding the resilience to changes in the core structure is purely due
to connections between the shells (and consequently within the shell).

Theorem 7.1 (Core Strength Condition for Skeletal Core Graph). If G = (V?, E?) is a skeletal
core graph, there exists no edge (u, v) such that CS(u) > 1and CS(v) > 1, where CS(u) is the

core strength of node u (Section 4.3.2).

Proof. We can seethatin any graph, if the core number of any node changes on removal of an edge
(u, v), the core number of u and/or v should have also changed. That is, it is not possible for a
node other than u, v to change core number but for both v and v to not change when edges (u, v)

is deleted.

Assume that there exists an edges (u, v) in the skeletal core graph G? such that CSgo(u) > 1
and CSg-(v) > 1. Then, if we remove this edge to get graph G' = (V?, E? \ {(u, v)}), the core
strength of v and v drops by at most 1. Thatis, CSg/(u) > 1 and CSg/(v) > 1. So, by definition of
core strength, the neither u or v changes core number; and consequently there are no other nodes

in the graph that changes core number due to the edge deletion.
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This means that G was not a skeletal core graph. Hence, proved by contradiction. ]

Theorem 7.1 provide us a way to check if a given graph is a skeletal core graph efficiently. After the
k-core decomposition, we need to calculate the core strength of all the nodes, and check if there
are any edge where both endpoints have core strength greater than 1. Algorithm 10 describes this

in more details.

Algorithm 10 Algorithm to check if a graph is a core skeletal graph or not.
1: function CHECKSKELETALCORE(G = (V/, E))
2: CS < CoreStrength(G)
3 for (u,v) € Edo
4 if CS[u] > 1 A CS[v] > 1then
5: return False
6: end if
7
8
9

end for
return True
- end function

Theorem 7.2 (Complexity of Algorithm 10). The time complexity of Algorithm 10 is O(|E

); and the

space complexity is also O(| E|).

Proof. The time complexity of calculating the core strength of all nodes in a graph is O(|E|). Then
we need to checkthe core strength forallthe edges. Thiscanalso be donein O(|E|). So, the running

time of Algorithm 10 is O(| E|).

We do not need to store the input graph while calculating the core strength of all the nodes - that
is O(]E|). We need O(] V/|) to store the core strengths of all the nodes. So, the space complexity of
Algorithm 10 is also O(|E|). O

Theorem 7.3 (Correctness of Algorithm 10). Algorithm 10 always returns True for a valid skeletal

core graph, and False otherwise.

Proof. Theorem 7.1 returns False iff there exist an edge (u, v) such that CS[u] > 1 and CS[v] > 1.

If there exists such an edge, we know from Theorem 7.1 that the graph is not a skeletal core graph.
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Similarly we can show that Algorithm 10 returns True only if the graph is a skeletal core graph. [

7.1.1  Categorization of Skeletal Core Graphs

To better understand the effects of different type of changes to the core structure of a skeletal core
graph, we need to categorize them into different types. We start by categorizing the edges based on

the core numbers of its endpoints:
1. Inter-Shell Edges: These are the edges whose end vertices have the same core number.
2. Intra-Shell Edges: These are the edges whose end vertices have different core numbers.

Depending on the number of inter and intra shell edges, we have two extreme cases of skeletal core

graphs. We call them centralized and decentralized skeletal core graphs.

1. Decentralized Skeletal Core Graph: There are the skeletal core graphs with no inter-shell

edges.

2. Centralized Skeletal Core Graph: These are the skeletal core graphs with: (a) no intra-shell
edges, except in the degeneracy core, and (b) all the inter-shell edges have one endpoint in

the degeneracy core.

As an example consider the toy graphs shown in Figure 7.1. The color of the nodes indicates their
core number - red is 3, green is 2 and blue is 1. We can see that both of the graphs are core skeletal
graphs. In Figure 7.1a all the nodes connects only to another that have the same core number. So
this is an example of a decentralized skeletal core graph. In Figure 7.1b, all the nodes connects to a

node in the degeneracy core (red nodes). So, Figure 7.1b is an example of a centralized skeletal core

graph.

In the rest of the discussion, we will used G2 = (Vg2, EZ) and GZ = (V¢Z, EZ) to denote de-

centralized skeletal and centralized core graphs respectively.
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Figure 7.1: Toy example showing Decentralized (Figure 7.1a and Centralized (Figure 7.1b) Skeletal Core
Graphs. Here the red, green and blue nodes have core numbers of 3, 2 and 1 respectively. In Figure 7.1a,
we can see that all the nodes connects to a node in the degeneracy core (red node). In Figure 7.1b all
the nodes are connected to another one with the same core number.
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Figure 7.2: Different skeletal core graphs falls between centralized and decentralized core graphs.
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Depending on the number of inter and intra-shell edges, all the core skeletal graphs will fall some-
where between decentralized and centralized core graphs Figure 7.2. To quantify where it falls within

this range, we propose the Centralized Score measure.

The basic idea behind centralized score is that for a node u, the closer its neighbors in the k(u)-
core are to the degeneracy core, the more central the node is u. So, for a skeletal core graph G =

(V7, E?), we define the Centralized Score as,

B 1 1 k(u) — k(v)
EO) = [V V], 2 O] 2 ke a() -

VEV\VK* uerk(V)(v)

Higher values of centralized score indicates that that graph is closer to a centralized skeletal core
graph, and lower values indicates that it is closer to a de-centralized skeletal core graph. Decentral-
ized skeletal core graphs have a centralized score of 0, and centralized skeletal core graphs have a

centralized score of 1.

71.2  Skeletal Core Subgraph of a Graph

Given a graph G = (V/, E), we can obtain a subgraph G = (V/, E?); E? C E such that G7 is a

skeletal core graph. We call G the skeletal core subgraph of G.

We can use Theorem 7.1 to find the edges to delete. At each step, all the edges that connects nodes
with core strength greaterthan 1 are candidate for deletion. Arandom edge from these candidates s
selected, and removed from the graph. Then, the core strengths are recomputed and the candidate
sets are generated again. This continues until there are no more candidate edges to remove. This
is described in Algorithm 11.

Theorem 7.4 (Complexity of Algorithm 11). The time complexity of Algorithm 11 is O(| E|); and the

space complexity is also O(| E|).
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Algorithm 11 Algorithm to reduce a graph to its skeletal core subgraph
1: function SKELETALCOREDECOMPOSITION(G = (V/, E))
2 R+ 0
3 repeat
4: CS < CoreStrength(G)
5 R+ {(u,v) € E: CS[u] >1ACS[v] > 1}
6
.
8

X < Random element of R
E + E\{X}
until R =
o: return G
10: end function

Proof. Computing the core strength of all the nodes for the first time can be done in O(|E|). For
the subsequent steps, instead of recomputing it, we can simply calculate it for only those nodes
involved in an edge deletion since we have the guarantee that the core number does not change

due to the edge deletion.

Then, updating the core strength of a node can be donein constant time with proper data structure.
The loop in Algorithm 11 repeats for at most | E| times, and one edge deletion results in update of
the core strength of two nodes. Inside each loop, the sets R and E can be found quickly through

proper pruning,.
So, the overall running time of Algorithm 11is O(| E|).

The space required to store the graph is O(|E

), the core strengths of all the nodes can be stored

in O(|V|), and that for Ris O(|E|).

So, the overall space complexity of Algorithm 11is O(|E). O

Theorem 7.5 (Correctness of Algorithm 11). Algorithm 11 correctly outputs a skeletal core subgraph

of the input graph.

Proof. We know that removing an edge (u, v) cannot change the core number of u or v if their core

strength is greater than 1.
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Figure 7.3: Example graph demonstrating the non-uniqueness of skeletal core subgraph.

We can see that Algorithm 11 exits the loop when R = (). So, by Theorem 7.1, if the loop terminates
the output graph is a skeletal core graph. Because we are dealing with finite graph, it is not possible

for the loop to not terminate.

So, Algorithm 11 correctly outputs the skeletal core subgraph of the input graph. ]

Theorem 7.6 (Non-Uniqueness of Skeletal Core Subgraph). The skeletal core subgraph of a graph

is not necessarily unique.

Proof. Consider the graph shown in Figure 7.3a. The graphs shown in Figure 7.3b and Figure 7.3c

are subgraphs, and both are skeletal core graphs. O

CoRE CENTRALIZED SCORE: To quantify how far a graph is from the centralized or decentralized
skeletal core, we extend the concept of Core Centralized Score to a general graph. The core central-
ized score of a general graph is defined as the expected core centralized score of its skeletal core

subgraphs.

Foragraph G = (V, E), thelikelihood of an edge (u, v) remaining in the skeletal core subgraphis

dependent on the core number and number of neighbors in the same core of the node with lower
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core number (both nodes if they have the same core number). That is,

(

M) £0) - if ke (u) = k(v)

pluv) =4 =4 if k(u) < K(v) (7.2)
o if k(1) > K(V)
where,
e(u) = " (u)]. (7.3)

For edge (u, v), p((u, v), G”) gives us a measure of how likely the edges are to be in the skeletal
core. If p((u, v), G') = 1, the edge (u, v) has to be in all the skeletal core decomposed graphs of
G'.

Then, we define the Core Centralized Score of graph G as,

1 1 k(u) — k(v)
CE(G):W > ) > pluv)m— (7.4)

k*—k(v)
VEV\ Vs uer=(v)

7.1.3  Generative Model for Random Skeletal Core Graph

When we study the k-core structure of a skeletal core graph, we ask if the observed behavior is
expected for a random skeletal core graph with the same core number sequence of the nodes, or
whether it is due to some other aspect of graph structure. To answer this, we need to compare the
observed model with the null model -arandom graph with the same core number sequence. There
has been some works on generating graphs with a predefined k-core structure [12, 11]. However,
these previous models needs the number of inter- and intra- shell edges in addition to the core

number sequence - effectively restricting they type of graphs they can generate. So, we propose a
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method to generate a random skeletal core graph with a given core number sequence.

Given a set of nodes V/, assume that we have a mappingc : V — Z,.Wecallagraph G = (V, E)
is valid with respect to the mapping ¢, if Vv € V, k(v, G) = c(v). Thatis, suppose every node
in V has an integer mapped with it. A graph is called valid with respect to this mapping, if the core

number of all the nodes in the graph is equal to the integer that is mapped to it.

If there is a subset V' C V/, such that thereis a graph G" = (V’, E') where Vv € V', k(v, G') =
c(v),wewillreferto G" as partially valid. That s, if only a subset of nodes for which the core number

and the integer mapped to it matches, we call it partially valid.

Now the problem is given V' and c, how can we generate a random graph G = (V/, E) that is
valid with respect to c. There are some mappings ¢ for which no valid graph exists. So, we start by
considering the necessary conditions for ¢ so that a valid graph can be generated.

Theorem 7.7 (Coreness Validity Constraint). Fora given mapping c, a valid graph exists iff Vv € V,

{ue V\{v}: c(u) = c(W}] > c(v)

That s, a valid graph can exist if and only if for every node u € V, there are as many other nodes with

same or greater core number than the core number of u.

Proof. We will show the proofin two steps: (1) if the coreness validity condition is not satisfied, there

can be no valid graph, and (2) if the coreness validity condition is satisfied, there is always a valid

graph.

Step 1: Assume that that the coreness validity condition is not satisfied. Then there exists at least

{ve V\{v}:clu)>c(v)}| < c(v).

one node v € V such that,

Then, there are not enough nodes that v can connect to to obtain a core number of c(v). That is,
v cannot be in any graph valid with c. Therefore, it so not possible to obtain a valid graph if the

coreness validity condition is not satisfied.

Step 2: In this step, we need to show that if the coreness validity condition is satisfied, a valid graph
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exist. We will show this by induction. We begin by assuming that the coreness validity condition is

satisfied.

Let k* = max c(u),and V* ={u € V : c(u) = k*}.If we pickany node v € V*, by the coreness
ue

validity condition,

[{fue VA{v}iclu) =K} =K
Hviu{ue V\{v}:c(u)=k"}|>k*+1

V] > k" + 1.

This means that we can construct a graph G* = (V*, E*) such that every node is connected to
k* other nodes. So, G* is partially valid. Therefore, if the coreness validity condition holds, there is

always a partially valid graph.

Suppose that we have two nodes u, v in graph G’ such that, k(u, G) < (v, G). By the definition

of k-core, adding an edge (u, v) can never change the core number of v.
Now assume that there is a partially valid graph G’ = (V’, E’) suchthat V* C V’. Consider a node

v € V' \ V/,and add it to G’ without any edges. Then, k(v, G') = 0. Let,

S={ueV :clu)>c(v)}
S| > Kk*

|S| > c(v).

That is there are enough nodes in G’ for v to connect in order to get a core number of c(v). So, we

can connect v to ¢(v) other nodes in S, and the resulting graph is also partially valid.

If we keep repeating this process we will reach a point at which V' = V. So, if the coreness validity

condition holds, a valid graph always exist.
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Therefore from Step 1and 2, Theorem 7.7 follows. [

In Step 2 of the proof for Theorem 7.7, we describe a method for constructing a k-core graph for a
given distribution of core number. In the graph that is generated, if any edge is removed the core

number of at least one node will change. So, it is a skeletal core graph.

Algorithm 12 describes the process of generating a random skeletal core graph from a given core

number distribution.

Algorithm 12 Algorithm for generating a random skeletal core graph of given core number se-
quence.

1. function GENERATERANDOMSKELETALCOREGRAPH(C)

2: if |CorenessValidityCondition(c) then

3: return None
4: end if
5: V0
6: E<«+ 0
T: G« (V,E)
8: kK* < max J
(ig)ec
9: while k* > 0 do
10: S« {(i,j)ec:j=k*}
n: V—Vu{i:(ij)eS}
12: while |S| > 0do
13: (io, Jo) < Pop random element from S
14: N « Select jo random element from V' \ {ip}
15: E <+ EU{(io,ir) i € N}
16: S+ {(/1,_/1) €S e N}
e "+ {(h,s—1)€S:ji—1>0}
18: S+ (S\SHuys”
19: end while
20: k* < k*—1
21 end while
22: end function
23: return G

Theorem 7.8 (Complexity of Algorithm 12). Both the time and space complexity of Algorithm 12 is

linear with the number of nodes.

Proof. We can see that checking the coreness validity constraint is linear with the number of nodes.
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We can also see that the loops will execute for O(|V]). So, the running time of Algorithm 12 is

O(V]).

Similarly we can show that the space complexity of Algorithm 12 is O(|V]). O

Theorem 7.9 (Correctness of Algorithm 12). /fc : V — Z, is desired the mapping from node id to

core number, Algorithm 12 outputs a graph G where Vv € V, c(v) = k(v).

Proof. We will divide the proof into two parts:
1. Show that all the nodes in the degeneracy core have a coreness of k*.

2. Show that any node v, added after the degeneracy core has coreness of ¢(v) and does not

change the coreness of any previously added node.

In Algorithm 12, E is the set of edges. So, when we talk about degree we are referring to the degree

w.rttothe edgesin E.

Part 1: Suppose for some k < max c(v)and V! = {v € V : c(j) > k}, we already have
ve

G' = (V' E')suchthatVv € V' k(v, G') = c(v).

Let V = {v € V : c(v) = k}. We need to show that after one iteration of the while loop (Steps 12-

19) : (a) all nodes in V have a coreness of c(v), and (b) no node in V'’ changed their coreness.

Be construction, Yv € V/, the node v gets connected to c(v) nodes from V' U V. So, all nodes in
V' U V we be in the k-core after the while loop terminates. Again by construction when an edge
(ip, i1) is added (Step 15), it is guaranteed that ig is not already in the k-core. So the coreness of no

other can increase beyond k by this edge addition.

So, all nodes in V gets a coreness of k and the coreness of no node in V'’ changes after the while

loop.

Part 2: We need to show that in the first iteration of the while loop (Steps 12-19), all nodes in V' =
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{v eV :c(v)=k*} getsacoreness of k*.

In this case, V/ = (), and like in Part 1, every node in V is guaranteed to have at least k* neighbors

in V by the end of the while loop. So, all nodes in V will be in the k*-core.

Again, when an edge (o, /1) is added, it is guaranteed that iy is not in the k*-core already. So, this

edge addition cannot increase the coreness of i; beyond k*.
So, at the end of the while loop all nodes in V have a coreness of k*.

From Part 1 and 2, by induction, we can see that Algorithm 12 outputs a graph G where Vv € V,

c(v) =k(v). O

Theorem 7.10. Let G* = (V'*, E*) be the degeneracy core of the skeletal core graph. Then the num-

ber of edges i,

< |E*| < 1.

4 srers [
Proof. Recallthatin askeletal core graph, there are no edges (u, v) where the core strength of both
uand v are greater than 1.

Let us consider the two sets:

Vi={veVv :CS(v)>1}

VE=Vv*\ VT

For simplicity we consider the case where k* - |V*| is even. We consider two boundary cases: (1)

VT =0,and (2) argmax |V T|.
Case1: When VT = ().

In this case, all the nodes are in V+, i.e. all nodes have k* neighbors in V*. So, the number of edges
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K VA k- 1V
E| > = .
El2 — 5

Case 2: When argmax |V T|.

We know that every nodein VT connectsto at (k* 4 1) nodesin V+, and any node in V+ can have

at most k* connectionsto V' '. That s,

K [V > (K +1) - [V
k* |V

Vi< — 1= 1
Vi< k* +1

We know that,

VI + [V =V
2k* 4 1
e+ 1

[VH > [V
kK*+1

V> :
| |—2k*+1

V7.

When we have max |V T

, we get min | V1|, By definition, there are no edges between any pair of
node from V', and every node in V+ has exactly k* connections. In this case the number of edges
is,

k* - (k* + 1)

E| <
El = 2k*+1

V.
If we generalize to cases where k* - | V*| can be odd,

k* - |V* k*+1)-k*-|V*
V) ey < [ DKV
2 2k* +1

98



For k* > 0,

max <[(k* +21k)*‘-i/—(*1' |V*|—‘ — [@-D =1. (7.5)

Thus,

< |EF|I <L 1.

7.2 Skeletal Core Graph and Core Structural Change

In this section, we estimate the core resilience of a core skeletal graph. The core resilience is defined
as the rank correlation between the rankings of the nodes, as ranked by the core numbers, before
and after edge deletion. Once an edge is deleted from a core skeletal graph, the resulting graph is
no longer a core skeletal graph. So, we start by examining the effect of one edge deletion. We also
make the simplifying assumption that there are only two shells: the k-shell and the (k — 1)-shell.
This does not affect the overall validity as we can further extend the same argument by considering

lower shells.
To calculate the core resilience of G, we need to compute the following in steps:

1. Probability that the deleted edge is from Ex, Ex_1 and Ex x_1. Represent these by p(Ey),

p(Ex_1) and p(Ex x_1) respectively.

2. Core resilience as a result of the edge deletion from each set of edges. Represent these by

r(Ex), r(Ex_1) and r(Ex x_1).
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3. Coreresilience of G, is

R(G) = p(Ex)r(Ex) + p(Ex—1)r(Ex-1) + p(Exk—1)r (Exk-1).

7.2.1  Core Resilience of Skeletal Core Graph

For simplicity, assume that there are only two shells - the k-shell and the (k — 1)-shell, in a skeletal

core graph, G7 = (V7, E%). Let | Vk| = n,

result easily generalizes to more shells.

STEP 1:

kn
|Ek|=?
k—1)fn
< o=

‘Ek’kfly S (k — 1)ff7

Vi_1| = fn,and |Ex_1| = g. As described above, the

An edge in Ex_1 is responsible for the core number of 2 nodes in the (k — 1)-shell, and an edge in

Ex x_1is responsible for the core number of 1 node in the (k — 1)-shell. So,

(k—1)fn
2

=(k—1)fn—2g

| Ex k1] = 2( — |Ex-1])

Then,

kn

1=

100

+g+(k—1)fn—2g:g(k+2(k—1)f—29).

(7.1)



The probabilities of the random edge being deleted from the different sets of edges is given by,

kn
P(Ex) = k+2(k—-1)f—2g (712)

_ 29
PE-) = I3t 1)F — 29 73
p(Ex k1) = 2((k — 1)fn = 29) (7.14)

k+2(k—1)f —2g
STEP 2: We need to consider three cases: (1) core resilience due to edge deletion from Ej, (2) core
resilience due to edge deletion from Ex_1, and (3) core resilience due to edge deletion from Ex x—_1.
Case 1: Edge deletion from Ey.

Let m the the number of nodes that change core number due to the edge removal. We can easily

show that these nodes will now be in the the (k — 1)-shell.
There are two factors that contributes to the concordant pairs count':

O The pairing between the nodes that do not change core number. That is, ("*2~").

2

O The pairing between the nodes that change core number. Thatis, (7).

So, the number of concordant pairs is,

(n(f+21) N m) + (';) (7.15)

There is only one factor that contributes to the discordant pairs count: the pairing between the

nodes that change core number and those that did not. So, the number of discordant pairs is:

m(n(f +1) — m) (7.16)

'Recall that we count ties as concordant in the definition of core resilience.
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Then, the core resilience is,

H(E) = (") + (B) — m(n(f + 1) — m)

- (n(f+1)) (7.17)
- (n(f]—-i—l)) ((n(f;— 1)> —2m(n(f +1) - m)) (7.18)
T % (mn(f +1) =), (7.19)

where ¢ = (”(fzﬂ)) is a constant and does not change because the total number of nodes is con-

stant.

We can show that k < m < n. The minimum value of m is when both endpoints of the deleted

edge arein a clique; and the maximum value of mis when the entire k-shell collapses in a cascade.

Now,

d
d—mr(Ek) =0 (7.20)
—n(f+1)+2m=0 (7.21)
m = @ (7.22)

We know that m should be within the range [k, n]. So

. n*f
minr(Ey) =1— e whenm=n (7.23)

maxr(Ex) =1— %(kn(f + 1) — k*) when m = k (7.24)

Case 2: Edge deleted from Ex_;.

Again, let m the number of nodes that changes core number. Then, there are three factors that

affects the concordant pairs count:

O The pairing between the nodes that do not change core number. That is, (”(”21)*”7).
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O The pairing between the nodes that change core number. That s, (rg)

OO0 The pairing between the nodes that change core number and the nodes in k-shell. That is,

mn.

So, the number of concordant pairs is,

(”(f +21) - m) + (Z) + mn = (n(f; 1)> — mfn+ m’. (7.25)

Thereisonly one factor that affects the number of discordant pairs - the pairing between the nodes
that change core number and the rest of the nodes in the (k — 1)-shell. That is the number of

discordant pairsis,

m(fn — m) = mfn — m. (7.26)
Then, the core resilience is,
1 1
r(Ex_1) = . ((n(f; )> —2mfn + 2m2> (7.27)
2
=1- Em(fn —m). (7.28)

When an edgein E,_1 is deleted, we can guaranteed that at least the two endpoints of the edge will

drop core number. So,

2 < m< nf. (7.29)

We can get a tighter bound by considering the number of edges in | Ex_1].

Now let us calculate the minimum and maximum value of the core resilience. The maximum value
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of r(Ex_1) is 1,and it happens when m = nf. Now,

d

&r(Ekfl) -0 (7.30)

2
—E(fn—2m) =0 (7.31)
=T (7.32)

== ,
So, we have,
max r(Ex_1) = 1whenm = fn (7.33)
F2n2 f

minr(Ex_1)=1-— Z whenm = En (7.34)

Case 3: Edges deleted from Ej x—_1.

Again in this case, let m be the number of nodes that changes core number; and all of them come

from the (k — 1)-shell. So, like in the Case 2, the core resilience is given by,

r(Exx_1)=1— %m(fn —m). (7.35)

In this case, only one endpoint of the deleted edge is is the (k — 1)-shell. So,

1<m<mn. (7.36)
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7.2.2  Core Resilience of Decentralized Core Skeletal Graphs

In a decentralized core skeletal graph, Ex x—1 = 0. So, the probability of edge deletion is given by,

k
MQ)ZIIHFTB (7.37)
_ f(k=1)
p(Ex-1) = KT fk—1) (7.38)
p(Ek,k—l) =0 (7.39)

Let mg and m; be the number of nodes that changes core number if an edge is deleted in Ex and

Ex_1 respectively.

Then the expected core resilience is,

R(GpR) = p(Ex)r(Ex) + p(Ex—1)r(Ex-1) (7.40)
B k(1=2(mon(f +1)—m3))  f(k—1)(1—2(mnf —m3))
- Kt fk—1) * kT fk—1) (7.4

2 (k(mon(f +1) — m3) + f(k — 1)(nmf — m3))

=1- c(k+ F(k—1))

(7.42)

Random Skeletal Core Graph: Under the assumption that nk and nf(k — 1) are even, it is easy
to see that G2 and GP_; are k-regular and (k — 1)-regular graphs respectively. We know that for ‘a
random r-regular graph of large size is asymptotically almost surely r-connected’[18]. We also know
that when an edge is deleted in a skeletal core graph, all the nodes in the connected component

that the node with lower number belongs to drops to a lower core. That is,

Mo = n (7.43)

m, = fn (7.44)
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So, resilience,

2(k(n?(f +1) — n?) + f(k — 1)(f?n? — 2n?))
ck+Fk—1))

R(GP)=1— (7.45)

2n?kf

=l k=)

(7.46)

Skeletal Core Subgraph: If we are notdealing with arandom graph, but rather, the result of skeletal
core decomposition of a given graph, we need to replace my and m,_; with the expected size of

the connected component that a randomly chosen node belongs to.

7.2.3  Core Resilience of Centralized Core Skeletal Graph

In a decentralized core skeletal graph, Ex_1 = (. So, the probability of edge deletion is given by,

k
P(Ee) = k+2f(k—1) (7.47)
p(Ex—1) =0 (7.48)
(k- 1)f
P(Ekx-1) = Kt2(k—1)F (7.49)

Again, let mg and my be the number of nodes that change core number if an edge is deleted in E
and EkD_1 respectively. In this case, for the edge deletion from Ex x_1, m; = 1 because the node

whose core number changed is not connected to any other node in (k — 1)-shell.

Then, the core resilience of the centralised core skeletal graph due to one edge deletion is given by,

R(GZ) = p(Ex)r(Ex) + p(Exk—1r(Exk-1)) (7.50)
k(L =2(mon(f +1) —mg))  2f(k—1)(1—2(fn—1))
- Kt 2f(k—1) KT 2f(k—1) (751

2 (k(mon(f +1) — m3) + 2f (k — 1)(fn — 1))

=1- c(k+2f(k = 1))

(7.52)
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Random Skeletal Core Graph: Again in the case of a random graph, my = n. So, the resilience is,

D(kmf + 2f (k — 1)(fn — 1))

R(GH) =1 = = ork— 1))

(7.53)

Skeletal Core Subgraph: Again if the skeletal core we are dealing with is derived from some other
graph, we estimate mg as the estimated size of the connected component that a randomly selected

node in the k-shell is a member of.

7.2.4  Core Resilience of Centralized vs Decentralized Skeletal Core Graphs

Over all the possible decentralized and centralized core skeletal graphs (assuming n, f, k are the

same?), which one has the highest core resilience?

We only need to consider the resilience for the random graphs.

2n°kf 2(kn?f +2f(k — 1)(fn — 1))

R(6p) = R(6E) = — s F— 1) c(k+2f(k—1))

(7.54)

We can show that for n > 2, R(G2) — R(GZ) < 0.Thatis, for a random graph, the centralized

skeletal core graph has higher resilience than the decentralized skeletal core graph.

7.2.5 Experiment

From Equation 7.54, we know that skeletal core graphs that are more centralized have higher core
resilience as compared to decentralized ones. So, make this hypothesis that for similar size graphs
of approximately similar distribution of nodes in each shell, the graphs that has skeletal that are

more centralized are more likely to have higher core resilience.

To verify this experimentally, we take 16 real world graphs of approximately similar number of nodes

2nis the number of nodes, f is the distribution of nodes in the different shells, k is the maximum core number.
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Figure 7.4: Core Centralized Score (x-axis) vs Core Resilience (y-axis) for various real-world networks.

(10%) and similar distribution of nodes in each k-shell (Table C.1). We calculate the centralized core
score for each of these graphs, and calculate the core resilience of these graphs (to 10% edge dele-
tion for the entire structure). Figure 7.4 shows the Core Centralized Score in the x-axis and Core
Resilience in the y-axis. Each point represents one graph. In the figure, we can see that graphs with

higher core centralized score have higher core resilience in real-world graphs.

7.3 Skeletal Core Graph and Graph Unraveling

When we consider the anchored k-core problem, the concept of skeletal core graphs can also pro-
vide insight into why it is easier to find anchors in some graphs than others. We already know that it
is easier to convert a node in (k — 1)-shell into a follower compared to one in (k — i)-shell, where
i > 1. So for this discussion we will consider only the k-core and the k — 1-shell, i.e. we assume

that all the followers will come from the k — 1-shell.

In this section, we ask the question, what effect does the connections between the k-core and (k—1)-

shell have on the number of followers, given a fixed number of anchors? Because we are talking about
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why itis easier to find lots of followers in some graphs compared to others, we are not talking about
the optimal anchor selection. So we will consider multiple random anchor selection.

Theorem 7.11. All the nodes in V' \ Vi forms a skeletal core sub-graph, then the increase in the size
of the anchored k-core comes purely from the anchor nodes and there will be no follower regardless

of the number of anchors allowed.

Proof. This follows directly form the concept of candidate followers. If all the nodes in V'\ V satis-

fies the condition to be in a skeletal core graph, the set of candidate followers is an empty set. [

Theorem 7.12. The minimum number of edges such that set V' C V' '\ Vj can still be candidate
followers (with respect to the k-core) if the core strength of node u € V'is, CS(u, G) = 1+ (k —

k(k, G)). We will refer to the subgraph induced by such nodes as Nearly Skeletal Core Sub-Graph.

Proof. This follows directly from the concept of core strength. O

To study the effect of the connections between the k-core and (k — 1)-shell, we assume that:
1. The number of candidate nodes in in the (k — 1)-shell is the same.
2. Allthe candidate nodes are in the Nearly Skeletal Core Sub-Graph.

To understand the structural difference behind why we have a lot of followers in some graphs than

others for the same number of anchors, we need to study:
1. Ease of converting a node to a follower.
2. Size of cascade (of nodes becoming followers), due to anchors.

3. Ease of triggering a cascade; that is a node u when anchored leading to other nodes not

directly connected to u also getting into the anchored k-core.

Ease of Converting One Node to a Follower: From [54], we know that nodes with higher residual

degree become followers more easily than those with lower values. It is easy to show that in nearly
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skeletal sub-graphs that have higher core centralized score, the residual degree will be higher com-

pared to the ones with lower core centralized score.

Size of Cascade: The size of a cascade in dictated by the number of connected components in the

nearly skeletal core sub-graph. If there is

Ease of Triggering a Cascade within a Connected Component: The ease of triggering a cascade
within an connected component is determined by the ease of converting the nodes in the compo-
nent to followers. That is, it directly relates to the core centralized score - cascades are more likely

to be triggered in components with higher k-centralized scores.

We combine these into a score that can tell us if the graph is likely to have lot of followers or not:

o= 120 ), (7.55)

n
S'eS

where Sisthe set of connected componentsinthe induced sub-graph, nisthe number of candidate

followers, and g € Z, depends on the number of anchors selected.

7.3.1  Number of Anchors and k-Centralized Score

From Equation (7.55) we know that in a connected component with higher k-centralized score, it is
easier to find anchors with large number of followers. However, we also know from Section 7.2 that
the number of edges within the shell decreases as the it gets closer to a centralized skeletal core
graph. We know that the expected number of connected components increases as the number of

edges decreases [2, 27, 83].

So, asthe k-centralized score of a graph increases, we expect the number of followers to increase ini-
tially; but after some point it will start to drop. This point of maximum number of followers depends
on the number of nodes as well as the value of k. Computing this theoretically requires estimating

the number of connected components, and currently, no such techniques exist. We thus perform
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Figure 7.5: Simulation results relating the fraction of followers against the Core Centralized Score (Fig-
ure 7.5a) and ag (Figure 7.5b). As expected we can see in Figure 7.5a that the fraction of followers
increases with core centralized score initially, but decreases after reaching some peak. In Figure 7.5b,
we can see that the fraction of followers increases with ag as expected theoretically.

an experimental analysis instead.

7.3.2 Experiments

To check therelationship between «, and the number of followers experimentally, we generate 300
graphs that consist of a 10-core and a 9-shell with 100 nodes each. The «, value of each of these
graphs are calculated, and for each graph 10 nodes from the 9-shell is selected randomly as anchor

and the number of followers is calculated. This is repeated 30 times.

Figure 7.5 shows the results of the experiment. Here the x-axis is «,, the y-axis is the fraction of
followers (to the number of candidate followers), and each dot is a graph. We can clearly see that

in graphs with higher values of a,, it is easier to find good anchors.
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7.4 Conclusion

In this chapter, we consider proposed the Skeletal Core Graph - the graph such that if any edge is
removed, the core number of at least one node will change. We show how we can efficiently check
if a given graph is a skeletal core graph, and to generate random skeletal core graphs of a given core

number sequence.

We also propose two types of skeletal core graphs - the decentralized and centralized skeletal core
graphs. Theoretically we show that graphs that are closer to the decentralized skeletal core graphs

have lower resilience to core structural changes.

Finally, we relate the ease of selecting anchors for the anchored k-core problem with how close the
graph is to decentralized or centralized core graphs. We show through simulations that in graphs
that are very close to either of these categories, it is difficult to get anchors that results in large
number of followers. However, there is some middle ground between these two were the graphs

have a lot of followers to anchors.
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Appendix A

Core Structural Change

A1 Edge Deletion and Node Deletion

We define the core resilience under two scenarios in which the ranking of the nodes by core number
might change: edge deletion and node deletion. Note that node deletion can be treated as a special
type of edge deletion, as when a node is deleted, all of its edges are deleted. In this section, we show

the relationship between core resilience due to edge deletion and that due to node deletion.

Consider, a graph G = (V, E). The (r, p)-core resilience of G is given by Ry%”(G) and REP(G)

(by definition) for node deletion and edge deletion, respectively.

Assume that deletion of p nodes results in deletion of p’ edges. It is reasonable to assume p’ > p,
since real-world networks rarely have an average degree of one. That is, RE¥")(G) ~ R™P(G),

and in general RE€P(G) > REP(G). So, R (G) < REP(G).

Now let us consider the (r, p;, p,)-core resilience under edge deletion and node deletion.

P (RICV(G) — REX(G)) dx
Py
R?(PI-DU)(G) _ Rf(pl-Pu)(G) —

Pu — Pi
Rf(p/,pu)(G) < Rf(”"””)(G) (A1)
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A.2 Datasets

Type  Network 4 |E|  k*
AS_733.19971108' 3015 5196 9
AS_733.19990309" 4759 8896 12

AS

Oregon1_010331" 10670 22002 17
Oregon1_010428" 10886 22493 17
210 BIO_Dmela’ 7393 25569 11
BIO Yeast Proteint 1846 2203 5
CA_GrQc! 5241 14484 43
CA CA_HepTh! 9875 25973 31
CA_Frdos992! 5094 7515 7
INF_OpenFlights? 2939 15677 28
INF INF_Power 4941 6594 5
INF_USAIirg7? 332 126 26
5P P2P_Gnutellao8! 6301 20777 10
P2P_Gnutellaog! 8114 26013 10
P2P_Gnutella2s' 22687 54705 5
SOC_Hamsterstert 2426 16630 4
SOC  SOC_Advogato 5167 39432 5
SOC_Wiki_Votet 889 2914 9
TECH_Pgp? 10680 24316 31
TECH TECH_Routers_rft 2113 6632 15
TECH_WHOIS? 7476 56943 88
WEB WEB_Spam? 4767 37375 35
WEB_Webbase* 16062 25593 32

Table A.1: Real-world networks used for experiments. In this table, | V| is the number of nodes, | E| is the
number of edges, and k* is the degeneracy. These datasets were downloaded from SNAP (denoted
by 1), and Network Repository (denoted by 1).
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Appendix B

Graph Unraveling

B.1 Dataset
Network Abbr. | V] |E| Kmax  Kmid | |Gl |G |Erol 9]
socfb-combined FC | 4.0x10° 8.8x10* 115 17 1289 501 7029 13
ca-CondMat cC | 2.3x10* 9.3 x10* 25 4 2892 1179 3739 685
ca-HepPh CH |12x10* 1.1x10> 238 4 1487 634 1901 362
loc-Brightkite LB | 5.8x10* 2.1 x 10° 52 2 3288 2365 3004 2006
socfb-Northeasternl19 FN 1.4 x 10* 3.8 x 10° 43 33 4978 1246 18473 1
socfb-Syracuse56 FS | 14x10* 54x10° 75 46 5522 1417 37698 2
ca-citeseer cS | 22x10°> 8.1 x10* 86 3] 18486 8493 20187 5991
loc-Gowalla LG | 1.9x10° 9.5x 10° 51 3| 17890 10263 17706 7479
com-DBLP KD |3.1x10° 1.0x10%° 113 3| 23182 11010 25144 8240
web-Google WG | 8.7 x 10> 4.3 x 10° 44 4| 198014 46891 245188 20471
soc-Catster SC | 1.5x10° 54x10% 419 21 5285 2003 8428 1054
soc-Dogster SD | 4.2x 10> 8.5x10° 248 12| 20887 8750 26438 5339
soc-TwitterHiggs ST |45x10° 13x10" 125 17| 27146 9234 40651 3493
web-Hudong WH |2.0x10% 1.4x10" 266 5| 82791 40160 83886 29687
web-BaiduBaike WB | 2.0 x 10% 1.7 x 107 78 3| 51659 32501 50222 27735

Table B.1: Statistics of the real-world networks used in our experiments. |V'| and | E| are the number
of nodes and edges respectively; kmax and kmiq are the maximum and median values of the coreness
of all the nodes. | C,| and | C¢| are sizes of the candidate anchors and followers for kpmiq. |E| is the
number of edges in the subgraph induced with C¢ U C,, and |G| is the number of connected compo-

nents.
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Appendix C

Skeletal Core Graph

C1  Dataset
Network Category V| Kmax
AS_733_19971108 AS 3015 9
AS_733_19990309 AS 47509 12
Bio_Dmela BIO 7393 11
Ca_Erdos CA 5094 7
P2P_Gnutellal8 P2P 6301 10
P2P_Gnutella09 P2P 8114 10

Table C.1: Data sets used for experiments in Chapter 6.
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