Improving Core Resilience of Network under Random Edge Deletion

Ricky Laishram Syracuse University rlaishra@syr.edu Ahmet Erdem Sarıyüce University at Buffalo erdem@buffalo.edu

Tina Eliassi-Rad Northeastern University eliassi@neu.edu

Ali Pinar Sandia National Laboratories apinar@sandia.gov Sucheta Soundarajan Syracuse University susounda@syr.edu

Introduction

- The k-core of a network is the maximal sub-graph in which every node has at least k neighbors [1].
- Nodes that belong to higher k-cores are considered to be more central within the network.
- The idea of k-cores have been used in to various applications –

Improving Core Resilience

Problem: Given a graph *G* and edge budget *b*, which *b* edges should we add so that the core resilience of the modified network is as high as possible, without changing the core numbers?

Idea: Add the edges in such a way that it improves the Core Strength of the nodes with high Core Influence.

studying the internet [2], predicting protein functions [3] etc.

Problem

- How can we characterize the resilience of the k-core structure of a network against random edge deletion?
- Given a network, how can we improve the the resilience of its kcore against edge deletion?

Proposed Measures

Network Level Property:

n,p-Core Resilience: It is defined as the rank correlation between the ranking of the top *n*% nodes (ranked by core number) in the original network to that of the network after *p*% edges have been removed uniformly at random.

Node Level Property:

Maximize Resilience of k-Core (MRKC)

- Let *E*' be the set of edges that do not exist in *G*.
- Filter out edges from E' that would change the core number if they are added to G [4].
- For all $(u, v) \in E'$, assign edge priority as,

• Add the edges in decreasing order of the priority.

 Core Strength: It is a measure of how robust the node's core number is against edge deletion.

 $CS(u,G) = |\{v : v \in \Gamma(u,G), K(u,G) \le K(v,G)\}| - K(u,G)$

 Core Influence: It is a measure of how much other nodes relies on it for their core numbers

 $CI(u,G) = \sum_{v \in V_{\delta} \cap \Delta_{\leq}(u,G)} \frac{CI(v,G)}{|\Delta_{>}(v,G)|}$

Networks in which the nodes with high Core Influence also have high Core Strength are also likely to have high Core Resilience.

Core Resilience vs Core Influence-Strength

	Notations
Γ(u,G)	Neighbors of node <i>u</i> in <i>G</i>
K(u,G)	Core number of node <i>u</i> in <i>G</i>
$\Delta_{>}(u,G)$	Neighbors of <i>u</i> with core numbers greater than that of <i>u</i> in <i>G</i>

Full Paper

Ricky Laishram, Ahmet Erdem Sarıyüce, Tina Eliassi-Rad, Ali Pinar, and Sucheta Soundarajan. Measuring and Improving the Core Resilience of Networks. *In WWW 2018: The 2018 Web Conference, April 23–27, 2018, Lyon, France.*

References

- Stephen B Seidman. 1983. Network structure and minimum degree. Social networks 5, 3 (1983), 269–287.
- 2. Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and EranShir. 2007. A model of Internet topology using k-shell decomposition. Proceedings of the National Academy of Sciences 104, 27 (2007), 11150–11154.
- 3. Md Altaf-Ul-Amine, Kensaku Nishikata, Toshihiro Korna, Teppei Miyasato, Yoko Shinbo, Md Arifuzzaman, Chieko Wada, Maki Maeda, Taku Oshima, Hirotada Mori, et al. 2003. Prediction of protein functions based on k-cores of protein-protein interaction networks and amino acid sequences. Genome Informatics 14 (2003), 498–499.
- Ahmet Erdem Sarıyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and Ü. V. Çatalyürek. 2013. Streaming Algorithms for K-core Decomposition. Proc. VLDB Endow.6,6(April2013), 433–444.